
Token Binding for 0-RTT TLS 1.3 Connections
draft-ietf-tokbind-tls13-0rtt
Nick Harper
IETF 98

1



What’s Changed

● New language in Security Considerations for Proof of Possession
● Client switches from 0-RTT exporter to normal exporter during connection
● Client indicates 0-RTT exporter is in use with extension in TokenBinding 

struct

2



1: Attacker initiates TLS connection to Server

2: Attacker proxies request to 
victim client to sign EKM from 

connection 1

3: Attacker sends HTTP request on 
connection 1 with signed EKM from 2

An attacker that compromises a client to 
steal bound tokens and has access to a 
signing oracle on the client can perform 
this attack to replay bound tokens on a 
new connection so long as the attacker 
maintains the connection with the client. 

Once the attacker loses the connection to 
the client, the attacker cannot do this on a 
new connection.

Proof of Possession

3



1: Attacker initiates TLS connection to Server and 
gets a NewSessionTicket to use for 0-RTT 

resumption for a future connection

2: Attacker proxies request to 
victim client to generate Token 
Binding signature for a future 
connection that will use that 

NewSessionTicket

3: Attacker initiates TLS connection with 0-RTT 
data using Token Binding signature from 2

The attacker can do steps 1 and 2 as 
many times as it wishes. Step 3 does not 
need a live connection to the client.

After the attacker’s access to the client 
machine has been severed, the attacker 
can still send valid 0-RTT Token Binding 
signatures for up to the lifetime of a 
NewSessionTicket (up to 7 days).

4



1: Client initiates TLS connection to Server and 
gets a NewSessionTicket to use for 0-RTT 

resumption for a future connection

2: Client sends ClientHello and early data 
containing a TokenBindingMessage and 

bound token

3: Attacker extracts secrets for connection 
2 from client (PSK, (EC)DHE private key 

shares) along with the ClientHello and the 
0-RTT TokenBindingMessage

4: Attacker replays ClientHello with new early data 
but same TokenBindingMessage

This attack scenario never has the attacker use the private key, but they do use other secrets from the 
client. The maximum time window for carrying out such an attack after being removed from the client is 
dependent on how long the server will accept the replayed ClientHello.

5



Cl
ie

nt
He

llo
 se

nt

Se
rv

er
 F

in
ish

ed
 re

ce
ive

d

Cl
ie

nt
 F

in
ish

ed
 se

nt

Changing 
Exporters

Client switches from 0-RTT exporter to 
normal exporter as soon as possible

Client can still send request with 0-RTT 
exporter after sending Finished, for the 
case when the client starts preparing 
the request before the normal exporter 
is available, but sends it after the 
handshake is complete (e.g. request C 
to the right).

6



An argument for always using the 0-RTT 
exporter

A server that accepts TB and 0-RTT on the same connection means that the 
server considers the security properties of the 0-RTT exporter sufficient for at 
least some requests.

On those requests, it is logical for the server to accept them with 0-RTT 
exporter post-handshake as well.

A server cannot reject early data based on its contents, so the server’s decision 
to accept the 0-RTT exporter for some requests must apply to all requests.

7



Replay Protection TLS Extension

● Server sends it to indicate to client that the server implements some sort 
of replay protection of 0-RTT Token Binding signatures

● Replay of 0-RTT Token Binding signatures (with new application data) is 
only possible if the attacker has the PSK for that connection

● Such an attacker could also generate new Token Binding signature for a 
new PSK instead of replaying one

Does this proposed extension actually provide any value?

8



Upcoming changes

● Fix language in 2.1.1 around switching exporters to say:
○ “All requests which the client starts processing to send after the client sends its Finished 

message MUST use the exporter_secret for their token bindings.”

● Section 2.2.1:
○ Clarify that a change in Token Binding key parameter that causes a server to reject early 

data also includes whether or not Token Binding was negotiated.

9


