
Trill Parent node shi/, 
Mi2ga2on. 

IETF 98, Chicago.
h"ps://datatracker.ie0.org/doc/dra3-rp-trill-parent-

selec7on-03	
R.	Parameswaran,	

Brocade	Communica7ons	Inc.,	
parameswaran.r7@gmail.com.	

1	



Problem Statement/Summary

•  The	parent	selec7on	rules,	standardized	in	Trill’s	
tree	construc7on	process,	can	lead	to	un-necessary	
shi3s	in	parent-child	rela7onships,	in	some	
situa7ons.	
• Aware	of	this	impac7ng	latency	requirements	for	
some	customers.	
•  The	dra3	presented	here	proposes	two	dis7nct	
solu7ons	which	can	be	used	to	address	the	
problem.	

2	



	

	

Problem statement

• What	is	the	issue		with	Trill’s	standard	tree	construc7on	
method?		
•  Let’s	see	how	Trill	defines	parent	selec7on	during	tree	
construc7on.		
[RFC6325]:	
•  "When		building	the	tree	number	j,	remember	all	possible		
equal	cost	parents	for	node	N.		A3er	calcula7ng	the	en7re	
'tree‘	(actually,	directed	graph),	for	each	node	N,	if	N	has	'p'	
parents,	then		order		the		parents		in	ascending		order	
according	to	the	7-octet	IS-IS	ID	considered	as	an	unsigned	
integer,	and	number	them	star7ng	at	zero.	For	tree	j,	choose	
N's	parent	as	choice	j	mod	p."	

3	



Problem statement (contd).

•  There	is	an	addi7onal	correc7on	posted	to	this	in	
[RFC7780]:	
•  [RFC7780],	Sec7on	3.4:	
	
“This	is	changed	so	that	the	selected	parent	MUST	be	
(j-1)	mod	p.		As	a	result,	in	the	case	above,	tree	1	will	
select	parent	0,	and	tree	2	will	select	parent	1.		This	
change	is	not	backward	compa7ble	with[RFC6325].		If	
all	RBridges	in	a	campus	do	not	determine	distribu7on	
trees	in	the	same	way,	then	for	most	topologies,	the	
RPFC	will	drop	many	mul7-des7na7on	packets	before	
they	have	been	properly	delivered."	

4	



A	

1	 2	 3	

B	 C	

A	

1	

B	

2	 3	

C	

Consider	tree	2,	and	say	
node	A	is	the	tree	root.	
Now,	consider	what	
happens	if	Node	1	
goes	down?		

Assume	that	nodes	1,	2,	3	are	in	sorted	order,	sorted	by	ascending	order	of	ISIS	7	octet	ID.	

Before	Node		1	goes	down	the		
Ordered	list	is:	
[1	(@	index	0),	2	(@	index	1)	,	3	]	
Parent	selec7on	for	nodes	B,	C,	
Is	mandated	by	Trill	as	the	node	at	
index:	
(Tree	num	–	1)	mod	num_parents	
=	(2-1)	mod	3	
=	1,	which	corresponds	to	the	index	of	
Node	2.	

5	

Problem Statement (Depic2on) 



A	

2	 3	

B	 C	

A	

1	

B	

2	 3	

C	

	
Consider	what	happens	if	
Node	1	
goes	down?		

B	and	C’s	parent	shi3ed	from	node	2	to	node	3	–	this	is	unnecessary,	since	2	never		went	
down.	Similar	problems	can	happen	with	other	tree	numbers,	and	this	can	happen	at	each	
parent/child	rela7onship	in	the	tree.	

Ordered	list	of	parents	for	B,C		now	is		
[2	(@	index	0)	,	3	(@	index	1)]	
Parent	selec7on	for	nodes	B,	C,	
Is	mandated	by	Trill	as	the	node	at	
index:	
(Tree	num	–	1)	mod	num_parents	
=	(2-1)	mod	2	
=	1,	which	corresponds	to	the	index	of	
Node	3.	

6	

Problem Statement (contd) 



Solu2on (Approach 1).

•  How	can	this	be	solved?		
•  Affinity	sub-TLV	(It’s	a	sub-TLV	of	the	Router	capability	TLV).	
•  Other	dra3s/RFCs	now	use	affinity	sub-TLV	in	other	scenarios.		
•  Affinity	TLV	basically	dictates	parent-child	mappings.		
•  Is	published	by	the	parent,	iden7fying	the	list	of	children	it	
wants	to	bind	to,	and	the	specific	tree	on	which	this	is	to	be	
done.	
•  Powerful	sub-TLV	which	needs	to	be	used	within	certain	guide-
lines.	
•  Applicability	to	this	case,	operator	pins	s7ckiness	to	children	
on	a	specific	(parent)	node,	using	a	CLI.	Operator	takes	
responsibility	of	configuring	CLI	on	only	one	of	a	set	of	possible	
parent	nodes	(should	not	be	configured	on	more	than	one	
sibling,	and	should	not	be	configured	on	the	root	of	the	tree).	

7	



Solu2on (Approach 1) Contd.
•  Operator	configures	parent	s7ckiness	on	a	par7cular		parent	(designated	parent),	
for	par7cular	tree	number.	

•  	The	designated	parent	runs	through	a	tree	calcula7on,	ignores	the	default	Trill	
parent	selec7on	rule,	and	asserts	its	right	to	be	a	parent,	if	during	tree	
computa7on	it	finds	itself	to	be	a	poten7al	parent	of	one	or	more	child	nodes.	

•  Once	the	tree	computa7on	completes	(with	an	addi7onal	stabiliza7on	7mer),	the	
designated	parent	node	publishes	an	Affinity	sub-TLV,	iden7fying	the	child	nodes	
and	the	tree	number.	

•  This	is	also	repeated	in	any	subsequent	tree	computa7ons.	
•  Other	nodes	in	the	network	blindly	honor	the	affinity	sub-TLV	sent	by	the	
designated	parent,	if	any.	

•  Note	that	tree	structure	will	change	as	links	and	nodes	go	down	or	come	up	in	
the	network.	The	designated	parent	will	either	publish	unchanged,	or	change,		or	
retract	affinity	sub-TLV	as	network	events	change	the	tree,	depending	on	
whether	it	has	children	or	not	in	the	new	tree	order	(designated	parent	makes	a	
best-effort	to	try	and	preserve	its	exis7ng	child	rela7onships,	tree	structure	
permiqng,	disregarding	the	default	Trill	tree	construc7on	rule,	and	ignoring	its	
own	affinity	TLV	in	its	own	tree	calcula7on).	

•  In	the	event	of	a	retrac7on	of	the	affinity	sub-TLV,	other	nodes	in	the	network	
fall	back	to	the	default	Trill	tree	construc7on	rules.		

8	



A	

2	 3	

B	 C	

A	

1	

B	

2	 3	

C	

Consider	what	happens	if	Node	1	
goes	down?	Node	2	publishes	an	affinity	sub-TLV	before	Node	
1	goes	down,	preven7ng	the	problem	of	B	and	C’s	parent-
shi3.	

•  Once	2	publishes	an	affinity	sub-TLV,		
all	other	nodes	in	the	network	factor	
it,	in	their	tree	construc7on,	using	
Node	2	as	the	parent	for	B,C	in	tree	
2’s	construc7on.	

•  Node	2	does	not	blindly	honor	Trill’s	
default	parent	selec7on	rules	(and	
ignores	its	own	affinity	sub-TLV)	and	
instead,	tries	to	assert/preserve	its	
parent	rela7onship	to	its	children	to	
the	extent	possible,	and	publishes	or	
updates	the	affinity	sub-TLV	a3er	its	
own	tree	construc7on	of	tree	2.	

	

Affinity	sub-TLV,	Tree	=	2	,	
Child	=	B,C	(Originated	by	2)	
a3er	operator	config,	before	
Node	1	goes	down.		

9	

Solu2on, Approach 1: 

1	



Solu2on (Approach 2). 

•  Use	a	modified	version	of	SPF	which	inserts	a	policy	driven	
selector	for	the	choice	of	parent	when	mul7ple	parents	can	
pull	a	child	node	into	the	SPF	tree	at	the	same	op7mal	cost.			
•  Make	the	policy	func7on	choose	based	on	a	previous	stable	
snap-shot	of	the	same	tree.		
•  Hence	for	a	given	child	node,	it	will	pick	the	same	parent	that	
it	had	in	the	previous	stable	snap-shot	of	the	tree,	before	the	
network	churn	event	happened.	The	very	first	tree	calcula7on	
uses	the	default	Trill	parent	selec7on	rules.	
•  This	determina7on	happens	in	a	distributed	fashion	at	each	
node	in	the	network.		
•  Hence,	nodes	in	the	network	had	be"er	agree	on	what	the	
previous	stable	snap-shot	of	the	tree	looked	like.	

10	



Solu2on (Approach 2) Contd:

•  This	is	rela7vely	difficult	to	do,	but	we	can	leverage	the	
fact	that	by	the	7me	routes/result	of	the	tree	
computa7on	was	downloaded	to	the	RIB,	all	the	nodes	in	
the	network	agreed	on	the	previous	stable	version	of	the	
tree,	so	use	this	as	trigger	to	collect	the	snapshot.	
• May	need	addi7onal	dampening,	at	the	RIB	trigger.		
• Works	best	in	small	to	mid-size	networks.	
•  Special	handling	needed	for	link	flaps,	other	events	
where	the	parent	child	rela7onship	inverts	etc..	

11	



A	

2	 3	

B	 C	

A	

1	

B	

2	 3	

C	

Consider	tree	2,	and	say	node	A	is	
the	tree	root.	Now,	consider	what	
happens	if	Node	1	goes	down?		
During	tree	calcula7on,	because	the	
prior	tree	calcula7on	used	Node	2	as	
the	parent,		the		policy	selec7on	step	
con7nues	to	select		Node	2	as	the	
parent	in	new	tree	calcula7ons.		

Ini7al	tree	computa7on	uses	the	Trill	default	rules.	Subsequent	tree	computa7ons	use	the	
previous	stable	snap-shot	to	drive	parent	selec7on.		

Nodes	latch	to	their	previous	
stable	tree	computa7on	and	
use	that	to	guide	tree	
construc7on.	
A	is	tree	root,	Node	1	went	
down.	

12	

Solu2on, Approach 2

1	



Other Considera2ons:

• Between	the	two	approaches,	approach	A	is	
preferable,	since	affinity	sub-TLV	makes	the	
network	behavior	more	predictable,	unless	there	
are	IPR	considera7ons.		
• No	IPR	on	either	of	these	approaches	at	Brocade	
Communica7ons,	Inc.	

13	



Status/Advancement:

•  Reques7ng	adop7on	as	WG	document,	aware	of	customers	looking	for	a	way	to	
prevent	unnecessary	parent	shi3s.	

•  A	few	logical	inconsistencies	in	approach	B,	clarifica7on	in	Approach	A,	fixed	in	a	
private	copy	of	the	dra3,	will	upload	a3er	IETF98.	

•  Might	remove	or	tweak	approach	B	from	the	dra3	in	subsequent	uploads.	

•  Approach	B	as	proposed	here	may	not	be	feasible	and/or	can	be	tweaked	,		but	
the	policy	driven	SPF	tree	computa7on	proposed	in	approach	B	might	have	
some	value	if	there	is	interest		in	pursuing	network	wide	alterna7ve	default	
parent	selec7on	rules.	

•  Approach	A	can	be	enhanced	to	add	node	redundancy	for	the	s7cky/designated	
parent.	

•  Planning	to	change	the	dra3	to	Informa7onal,	assuming	approach	A	remains	
feasible.	

14	


