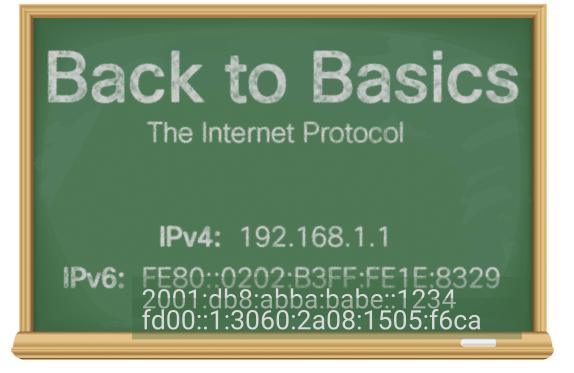
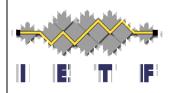
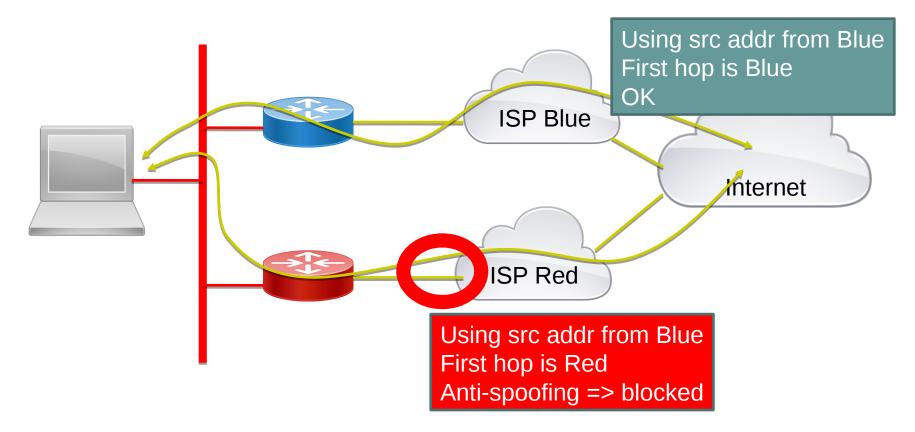
Provisioning Domains


B. Bruneau, T. Pauly, P. Pfister, D. Schinazi, E. Vyncke

IETF 98, March 2017 Chicago, US

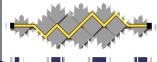
WHAT ARE WE TRYING TO SOLVE?

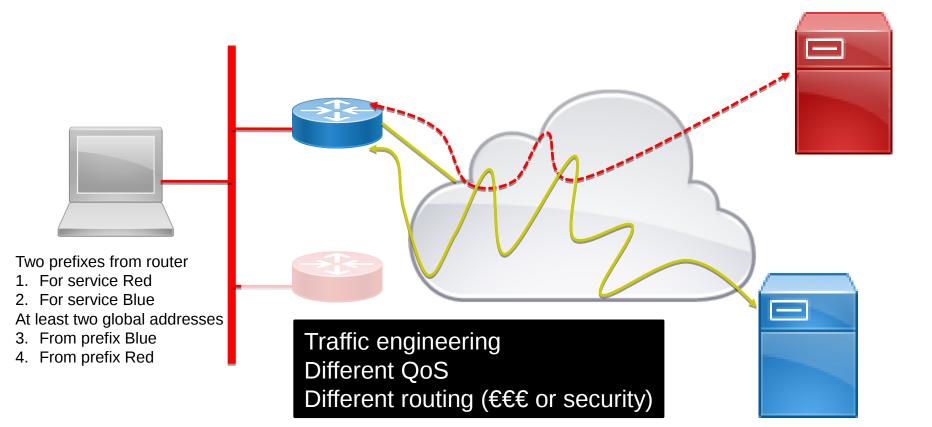



IPv6 Nodes have Multiple Addresses

- Each IPv6 nodes can have multiple addresses
 - 1 Link-Local Address
 - Several Global Addresses
 - Through DHCPv6 which can give multiple addresses
 - Through Stateless Address Auto Configuration (SLAAC)
 - 1. Based on several distinct Router Advertisements from each adjacent IPv6 routers
 - 2. Each Router Advertisements can include multiple /64 prefixes
 - 3. Nodes then generate 1, 2, ... Addresses per prefixes

Issue with Multi-Homing (Resiliency)

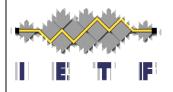


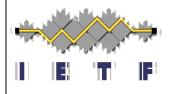


Solving the First Hop Issue

- · Need to associate a prefix with first hop
- Mainly a host issue (IETF work in progress)
- More complex (provisioning domain)
 - DNS servers from different ISP can have a different view (wwwin.cisco.com does not exist in global DNS)
 - Provisioning domain (PvD)
 - Need support in multi-interface router, IETF work in progress (Cisco, Apple, Google)
- Could have multiple layers of routers
 - **Destination / source routing** (IETF work in progress, aka source address dependent routing SADR) easier that Policy Based Routing

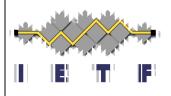
Use case 3: Service Selection


"So, the source address I Yes, that's right. Choose select affects the path and your source address, I'll associated policy make sure packets go down throughout the network?" the right path. Yikes! What do I do! I've never asked the user for this kind of information before! Credit: Mark Townsley



ուլ vf GR 🗢	10:16 PM	54% 💷
General	Cellular	
avoid charges when web browsing and using email, MMS, and other data services.		
Cellular Data Network		>
Personal Hotspot		Off >
Use Cellular Data for:		
iCloud Doc	uments	OFF
iTunes		OFF
FaceTime		
Passbook	Updates	OFF
Reading Lis	st	

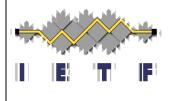
PROVISIONING DOMAINS (PVD)



Provisioning Domain (PvD)

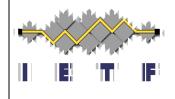
- Configuration items for a node to access a network
 - PvD ID (similar to FQDN) to tag all PvD information
 - can be used to remove PvD information when PvD is expired/removed/..
 - Human readable (localized) name
 - Prefix, next-Hop router
 - Internet access is possible
 - Captive portal is present
 - Recursive DNS server, DNS search list
 - Maximum Throughput, latency
 - Financial cost structure
 - Time validity/refresh period of the PvD
 - Security
 - Quality of Service for the first hop

Bootstrap PvD



- Bootstrap PvD information added to IPv6 Router Advertisement
 - PvD applies to all Prefix Information Options (PIO)
 - Use multiple RA if the PvD is not to be shared among PIO
 - Main information is PvD ID: a FQDN
 - Optional information as a string
 - "nl10n=Connexion à Internet;mp6=2001:db8::/32;cp=1"
 - Bootstrap PvD ID may be used to retrieve additional PvD information (next slide)

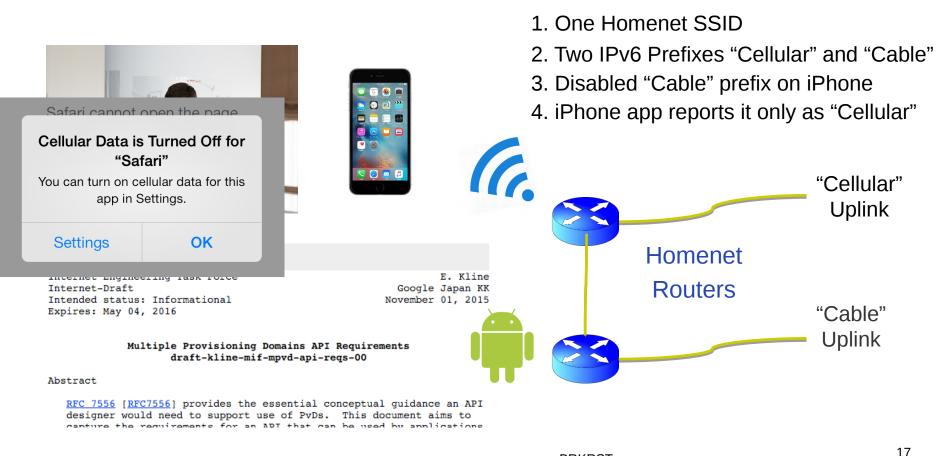
2nd Stage PvD


- A JSON file can be fetched via https://<PvDID>/v1.json
- All HTTP headers MUST be enforced
 - Accept-Language
 - Expiration
- The "masterIpv6Prefix" key is used to check whether the RA PIO is correct

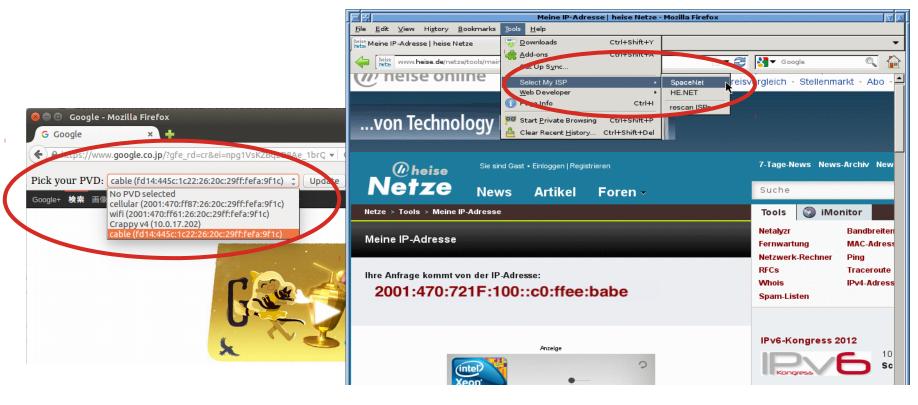
What kind of information?

- DNS information including search domains
- Reachable prefixes
- Internet access or walled garden
- Captive portal is present
- IPv4 NAT ---- presence, time-outs
- Segment Routing Header value
- Cost structure

Link to IPv4 Information


- PvD obtained by IPv6 could be linked to IPv4
 - IPv4 prefix included in bootstrap/2nd-stage PvD ?
 - Link via the source MAC address of the RA w/ DHCPv4 message
 - Interface ID (such as 3GPP link) when not ambiguous
 - DNS search list of DHCPv4 and IPv6 PvD

RUNNING CODE


IPv6 Multiprefix @ IETF 94 Hackathon - Test

BRKRST -2616

IPv6 Multiprefix Application Integration

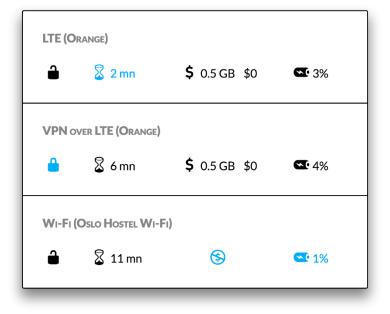
Credit: Gert Doering, SpaceNet AG, Munich, Germany

BRKRST -2616

neət

A New, Evolutive API and Transport-Layer Architecture for the Internet: <u>https://www.neat-project.org/</u>

European H-2020 project


10 partners (Cisco, Mozilla, EMC, Celerway...)

Provisioning Domain (information about a prefix) **via DNS** <u>draft-stenberg-mif-mpvd-dns-00</u> (old)

Integration to NEAT code: https://github.com/NEAT-project/neat/pull/80

Asking the user to choose with relevant criteria and simple UI

