DetNet Data Plane

draft-dt-detnet-dp-sol-01

DetNet Data Plane design team update

IETF 99, Prague, 2017

1

Outline

- Design team
- Solution
- Open issues
- Next steps

Design team

- Members
 - Jouni Korhonen (lead)
 - Carlos Bernardos
 - Loa Andersson
 - Yuanlong Jiang
 - Norm Finn
 - Balazs Varga
 - Janos Farkas
 - Tal Mizrahi
 - David Mozes

Design team update cont'd

- Weekly calls held...
- Other stuff found at the mailing list:
 - <u>https://mailarchive.ietf.org/arch/search/?email_list=detnet-dp-dt</u>

Use case – IEEE 802.1TSN over DetNet

Use case – PW-based DetNet

Use case – Native IPv6-based DetNet

"support"

(*) draft-dt-detnet-dp-sol-01

Mixing use cases..

- Combining "IEEE 802.1TSN over DetNet" and "PW-based native DetNet" use cases is rather straight forward:
 - The PW encapsulation/de-capsulation either takes place in an end station or an edge node.
 - However, interworking function still required at the edge node between 802.1TSN and PW e.g., when it comes to sequence numbers etc.
- Combining PW-based and "native IPv6" use cases:
 - Interworking needs some more tinkering. Probably trying to cover all possible combinations makes no sense (e.g., non-DetNet aware end station talks IPv6 to native IPv6 DetNet-aware end station over 802.1TSN interconnect..)

Solution basics

- Uses PseudoWires (with MPLS PSN) and IPv6 as the data plane encapsulation solutions.
- Designed to work with existing control planes
 - E.g. LDP, RSVP-TE, SR (for MPLS PWs) and centralized controller.
 - Small updates are inevitable, though.
 - Control plane for native IPv6 has not been discussed too much yet.
- Maximize the reuse of existing solutions and implementations:
 - Extend only where needed & mandatory for solution to work.
 - No new functionality unless really necessary.

Hard issues to get agreement

- Unified encapsulation for all types of traffic..
 - End result was two encapsulations.
 - Native IPv6 and MPLS PWs.
- DetNet flow identification:
 - A PW Label for MPLS PWs. There is no "dedicated" DetNet label per se.
 - A flow label for Native IPv6.
- Service protection:
 - Packet Replication and Elimination for Redundancy (PREF).
 - Also need to differentiate between DetNet compound and member flows..

Packet formats with MPLS PWs encapsulation

• DetNet flow:

- Flow-ID -> PW label.
- SeqNum -> CW.

• S-Label:

- A DetNet node to DetNet node "service" label that is used between DA-*-PE devices (see slide 5).
- T-Label:
 - Used to identify the LSP used to transport a DetNet flow across an MPLS PSN, e.g., a hop-by-hop label used between LSRs.

(*) draft-dt-detnet-dp-sol-01

Packet formats with Native IPv6 encapsulation

- DetNet flow:
 - Flow-ID -> Flow Label.
 - SeqNum -> DetNet DstOpt.
- For explicit routes DstOpt works well for unicast flows e.g., with Segment Routing.

Packet formats cont'd

- PW Control Word is the same as for Ethernet over MPLS (RFC4448).
- Required for packet Replication and Elimination Function (PREF).
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 3 4 5 6 7 8 9 0 1
 2 4 5 6 7 8 9 0 1
 2 4 5 6 7 8 9 0 1
 2 4 5 6 7 8 9 0 1
 2 4 5 6 7 8 9 0 1
 2 4 5 6 7 8 9 0 1
 2 4 5 6 7 8 9 0 1
 2 4 5 6 7 8 9 0 1
 2 4 5 6 7
- IPv6 makes use of Destination Options new option needed.
- Required for packet Replication and Elimination Function (PREF).

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 4 4
 Reserved
 16 bit Sequence Number
 (*) draft-dt-detnet-dp-sol-01

Flow identification..

- Integral part of DetNet flow processing. Flow identification has two key aspects (MPLS PSN example):
 - At the **forwarding and queuing level**:
 - Flow identification implicitly part of FEC and encoded into label(s) and TC bits.
 - May identify an aggregate of DetNet flows or individual flows (e.g., a FEC per flow).
 - As part of the Packet Replication and Elimination Function:
 - Flow lookup based on the PW Label and accompanied with the CW SeqNum to detect whether a packet has already be seen.
 - Done within the PseudoWire (extended forwarder) function.
 - Note: replication is basically a reuse of 1+1 protection mechanism.

Other data plane considerations

- Class of Service:
 - CoS for DetNet flows with PWs (and MPLS PSN) encapsulation rely on RFC3270 described DiffServ architecture.
 - CoS for DetNet flows with IPv6 encapsulation rely on DiffServ DSCP code points and related mechanisms.
 - Plus some other considerations.
- Quality of Service:
 - A baseline set of QoS capabilities for DetNet flows carried in PWs and MPLS can provided by MPLS with Traffic Engineering (MPLS-TE) and the related control planes..
 - IPv6 should leverage the underlying network layer such as 802.1TSN.
- Cross-DetNet flow resource aggregation:
 - The data plane implications of aggregation are independent for MPLS/PW and IP encapsulated DetNet flows, and should leverage existing work e.g., hierarchical LSPs.

Other data plane considerations cont'd

- Bidirectional traffic:
 - How bidirectional traffic between two end stations are handled (e.g., associated & co-routed bidirectional flows in a case of LSP), fate sharing, ensuring the same path, etc.
- Layer 2 addressing and QoS Considerations:
 - Background: how baseline TSN standards identify TSN streams (e.g. DetNet flows), use VLAN tags, multicast destination addresses, etc..
- Interworking between PW- and IPv6-based encapsulations
 - Currently TBD. See slides 8 and 17.

Time Synchronization

• A full section added with time-synchronization related considerations within DetNet deployments..

Open issues

- Few topics are still under work:
 - Interworking between MPLS and IPv6 DetNet flows/transports.
- Control plane is another topic... out of scope for this I-D. However...
 - The design team did consider it as well to some extent.
 - Controlling PREF function, resource reservations, etc...
- Multicast destined DetNet flows:
 - The data plane assumes p2p transport connectivity within the DetNet domain.
- Relay and Edge node processing clarifications for native IPv6.
 - E.g. whether PREF can be done in anywhere else than in end hosts and edge nodes.
- Management and control considerations..

Next steps..

- Call for adoption as a WG Item!!
 - We acknowledge there is plenty of work to do.. but the current draft should work as a good basis for the final solution.