Predicted Units & Policy Groups

IETF 99 July 2017 (draft-bertz-dime-predictunits-02 & draft-bertz-dime-policygroups-04)

Predicted Units v02 - Motivation

- In virtual world (NFV) resources allocated to a Diameter Client may not be consistent or visible to the Client
- During a Service Authorization, e.g. RFC 4006 CCA success, letting the Client know how much resources may be consumed & by when (if that is known) would
 - Give the Client an idea of when it may become 'exhausted'
 - Give the Client an opportunity to signal to other systems its load / availability or resize itself to meet demands
 - Resizing is never automated (it takes some seconds)

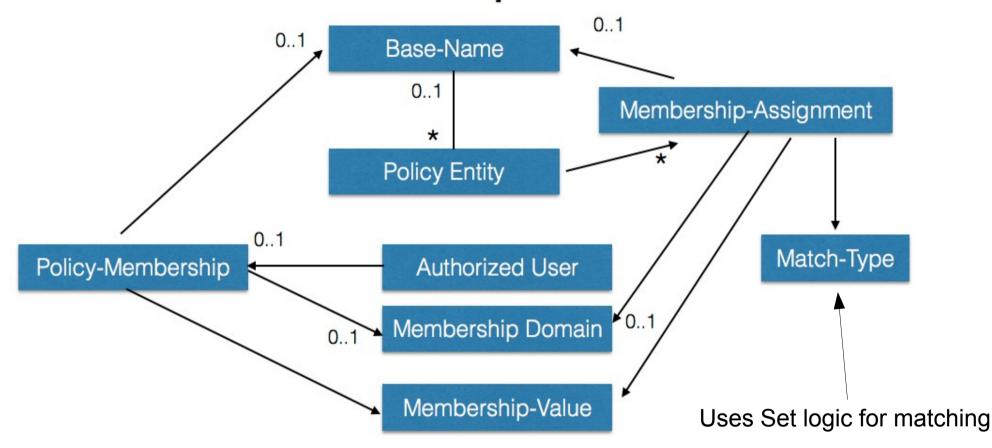
Predicted Units v02 - Update

- All editorial
 - Section Header Corrections
 - More discussion on Clients
- Refresher 2 Grouped AVPs commonly sent when Authorization of a Service occurs
 - Predicted-Service-Units ::= < AVP Header: TBD1 >
 - [CC-Time]
 - [CC-Money]
 - [CC-Total-Octets]
 - [CC-Input-Octets]
 - [CC-Output-Octets]
 - [CC-Service-Specific-Units]
 - [Time-Of-Day-Condition] < Conditions
 - *[AVP]
 - -

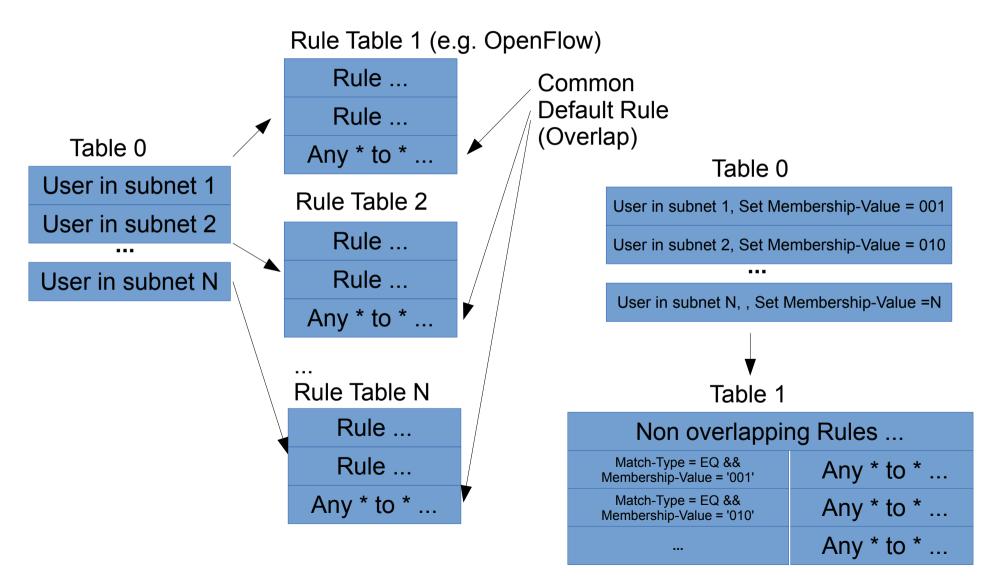
_

- Predicted-Service-Units-Series ::= < AVP Header: TBD2 > (List of PSUs with various Units / TOD conditions)
 - 1*{ Predicted-Service-Units }
- Ask Can we start WG adoption discussion (on list)

Intermission


Purpose

- Provide ability to Group Policy Rules into a common name
 - Already have some Identifiers
 - Filter-Ids (UTF-8 Strings) in RFC 7155,
 - It is a list of Filter-Identifiers
 - if RADIUS support is NOT required IPFilterRule is recommended
 - Classifier-ID (OctetString) in RFC 5777
 - No consistent Rule-Id support (some in 3GPP but not all Rule Types get Rule-Ids)
 - Grouping is supported by hierarchy in 3GPP through use of Base-Name < Adopted in this proposal
- Provide an efficient mechanism for applying groups of Policy Rules that appear in multiple hierarchies
 - Akin to Charging-Characteristics used in 3GPP
 - Generalized
 - Meant to be leveraged for provisioning patterns


Policy Groups - Update

- Editorial Update
 - Reworked Examples
 - Reworked Introduction per feedback from IETF 98
 - It was large update
 - More direct discussion

Relationship Model

Policy Groups Example 1, Overlap Deduplication at Enforcement Point - Adding Membership Assignment to Filters

Policy Groups Example 2, Application at the Decision Point Process

- Step 1 Determine All Rules where Membership-Assignment (Policy) and Policy-Membership (User) match
- Step 2 Filter Rules by Time of Day (RFC 5777) to determine active rules
- Step 3 Communicate Active Rules to Enforcement Point

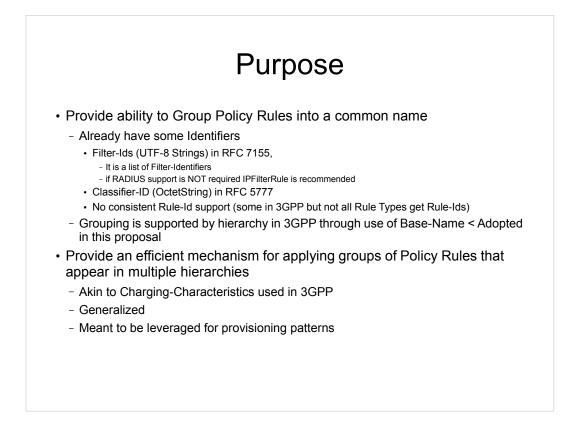
Applications

- De-duplication of Rules at the enforcement point
- Determining applicable Rules at the Decision point
- Combining both techniques (not discussed here)
- Real world scenario @ Operator
 - 60M devices with ~ 1200 rules (or so we thought)
 - We had no idea how to do this on Openflow (we were limited to 13 tables for everything...)
 - Used
 - METADATA for Membership-Value
 - Binary mask for METADATA based upon the Match-Type
 - Result
 - 3 Table Design for mobility downlink
 - Table 1 Match by DST IP, set Metadata for packet
 - Table 2 Match Flows and Metadata. Assign to pseudo tunnel IDs
 - Table 3 Match by DST & pseudo tunnel ID, Apply meters, accounting and drop / tunnel / etc as required
 - 2 Table Design for mobility uplink
 - Table 1 Unpack from Tunnel. Apply meters & accounting. Assign Metadata for packet.
 - Table 2 Match metadata & packet header. Apply actions as required.
 - Those 1200 rules became ~ 200. More work reduced this to ~ 12 rules in Table 1 of Downlink and Table 2 of uplink.

Next Steps

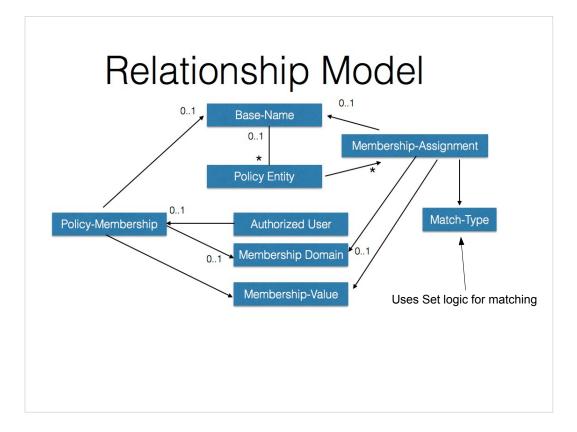
- Want more reviews
- WG Adoption?

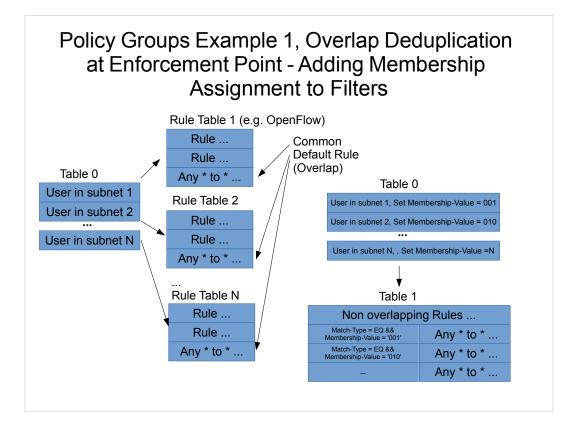
Predicted Units & Policy Groups

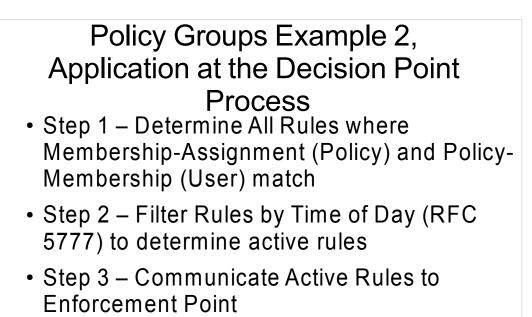

IETF 99 July 2017 (draft-bertz-dime-predictunits-02 & draft-bertz-dime-policygroups-04)

Predicted Units v02 - Motivation

- In virtual world (NFV) resources allocated to a Diameter Client may not be consistent or visible to the Client
- During a Service Authorization, e.g. RFC 4006 CCA success, letting the Client know how much resources may be consumed & by when (if that is known) would
 - · Give the Client an idea of when it may become 'exhausted'
 - Give the Client an opportunity to signal to other systems its load / availability or resize itself to meet demands
 - Resizing is never automated (it takes some seconds)


All editorial	
- Section Head	ler Corrections
 More discussi 	ion on Clients
Refresher – 2	Grouped AVPs commonly sent when Authorization of a Service occurs
- Predicted-Ser	rvice-Units ::= < AVP Header: TBD1 >
-	[CC-Time]
-	[CC-Money]
-	[CC-Total-Octets]
-	[CC-Input-Octets]
-	[CC-Output-Octets]
-	[CC-Service-Specific-Units]
-	[Time-Of-Day-Condition] < Conditions
-	*[AVP]
-	
- Predicted-Ser	rvice-Units-Series ::= < AVP Header: TBD2 > (List of PSUs with various Units / TOD conditions)
-	1*{ Predicted-Service-Units }





Policy Groups - Update

- Editorial Update
 - Reworked Examples
 - Reworked Introduction per feedback from IETF 98
 - It was large update
 - More direct discussion

Applications

- · De-duplication of Rules at the enforcement point
- · Determining applicable Rules at the Decision point
- Combining both techniques (not discussed here)
- · Real world scenario @ Operator
 - 60M devices with ~ 1200 rules (or so we thought)
 - We had no idea how to do this on Openflow (we were limited to 13 tables for everything...)
 - Used
 - METADATA for Membership-Value
 - · Binary mask for METADATA based upon the Match-Type
 - Result
 - 3 Table Design for mobility downlink
 - Table 1 Match by DST IP, set Metadata for packet

 - Table 2 Match Flows and Metadata. Assign to pseudo tunnel IDs
 Table 3 Match by DST & pseudo tunnel ID, Apply meters, accounting and drop / tunnel / etc as required
 - 2 Table Design for mobility uplink
 - Table 1 Unpack from Tunnel. Apply meters & accounting. Assign Metadata for packet. - Table 2 - Match metadata & packet header. Apply actions as required.
 - Those 1200 rules became ~ 200. More work reduced this to ~ 12 rules in Table 1 of Downlink and Table 2 of uplink.

Next Steps

- Want more reviews
- WG Adoption?