Network-based and Client-based DMM solutions using Mobile IP mechanisms

draft-bernardos-dmm-cmip-07
draft-bernardos-dmm-pmip-08
draft-bernardos-dmm-distributed-anchoring-09

Carlos J. Bernardos – Universidad Carlos III de Madrid
Antonio de la Oliva – Universidad Carlos III de Madrid
Fabio Giust – NEC Laboratories Europe
Juan Carlos Zúñiga – SigFox

Prague, DMM WG, 2017-07-19
Outline

• Motivation

• Client-based DMM

• Network-based DMM
 • Distributed Logical Interface

• Demos & Open Source

• Next Steps
Motivation

• 4 main DMM WG documents (fpc-cpdp, anchoring, deployment models and ondemand) close to be completed
 • But no solution specification yet

• There exist MIP-based (both client and network) solutions that could be adopted
 • With implementations available
Extending existing protocols…

- **Client Mobile IP (host) based**
 - draft-bernardos-dmm-cmip-07

- **Proxy Mobile IP (network) based**
 - draft-bernardos-dmm-pmip-08
Client-based DMM. Overview

- Re-uses existing approaches
 - Mobile IPv6 : RFC 6275
 - Authorizing MIPv6 BU with CGAs
 - draft-laganier-mext-cga
- Mobility management pushed to the edge of the network
 - The HA is deployed at the access router level
Client-based DMM. Entities

• Distributed Anchor Router (DAR)
 • Deployed in the MN’s default gateway
 • First hop router
 • It assigns a topologically valid address to MNs
 • An on-link MN can send/receive traffic using the address from the DAR
 • DAR forwards such packets as a plain router
 • A DAR anchors the address it assigned when the MN is not on-link (HA role)
 • The MN’s address is reachable through a bi-directional IP tunnel
Client-based DMM. Operations (i)

- When the MN moves to a new DAR, it can keep the old address reachability by notifying the corresponding DAR with a BU.
Client-based DMM. Operations (ii)

- The address configured at the new DAR is used for new sessions
- Old sessions are redirected through the IP tunnel
Net-based DMM. Overview

• Network based DMM approach
 • Based on Proxy Mobile IPv6 (RFC 5213)
• Mobility management pushed to the edge
 • Access router level
• Partially distributed solution
 • Centralized control plane kind-of LMA
 • A central node stores the mobility sessions of MNs
 • Distributed data plane
 • Only the edge routers handle the data forwarding
Net-based DMM. Entities

• **Mobility Anchor and Access Router (MAAR)**
 • One IP hop distance from the MN
 • Concentrates AR, LMA and MAG functionalities on a per-MN, per-prefix basis
 • Delegates and anchors an IP prefix to each MN attached
 • Serving MAAR (S-MAAR): MAAR which the MN is currently attached to
 • Anchor MAAR (A-MAAR): previously visited MAAR anchoring a prefix used by an active flow of the MN
 • Forwards data packets to/from IP networks

• **Central Mobility Database (CMD)**
 • Central node storing the BCEs of all the MNs in the domain
 • It plays the role of the LMA for the control plane
 • Not traversed by data packets
Net-based DMM
Operations: initial registration

- The S-MAAR registers the MN at the CMD through a PBU/PBA handshake.
Net-based DMM
Operations: handover

• 3 operational modes:
 • CMD as PBU/PBA relay
 • CMD as MAAR locator
 • CMD as PBU/PBA proxy

• Conceptually they are similar
 • The difference mainly consists on the message order

• We focus on the “proxy” mode
 • Already implemented
Net-based DMM
CMD as PBU/PBA proxy

• The CMD receives a PBU from the new S-MAAR announcing the MN attachment

• The CMD sends instructions to the S-MAAR and A-MAAR(s) on how to establish the proper routing configuration
Distributed Logical Interface

- Distributed Logical Interface (DLIF) concept
 - The DLIF is a software construct allowing to hide the change of anchor from the MN
 - Each serving D-GW exposes itself towards a given MN as multiple routers, one per active anchoring D-GW associated to the MN
 - This is achieved is by the serving D-GW configuring different logical interfaces
 - From the point of view of the MN, anchoring D-GWs are portrayed as different routers, although the MN is physically attached to only to the serving D-GW
 - The DLIF concept is also applicable to other network-based solutions
DLIF. Solution overview

Operator’s core

IP stack
mn1dgw1
phy interface
D-GW1

IP stack
mn1dgw1
mn1dgw2
phy interface
D-GW2

PrefA::/64
(AdvPrefLft=0)
PrefB::/64

PrefA::MN1/64 (deprecated)
PrefB::MN1/64

MN1

PrefA::/64

(DLIFs)
DLIF. Solution overview
Demos & Open Source

- Network-based DMM demonstrations

83rd IETF, Paris (March 2012)

87th IETF, Berlin (July 2013)
Demos & Open Source

- **ODMM**: Open platform for DMM solutions
 - https://www.odmm.net
 - GitHub repo http://github.com/ODMM

- Platform hosting Open Source DMM implementations
 - Mobility Anchors Distribution for PMIPv6 (MAD-PMIPv6)
 - https://odmm.net/node/12
 - draft-bernardos-dmm-pmip & draft-bernardos-dmm-distributed-anchoring
 - Client DMM over MIPv6 (C-DMM)
 - https://odmm.net/node/11
 - draft-bernardos-dmm-cmip

- OpenFlow-DMM
 - Software-Defined Networking (SDN) implementation
Next steps

- Is the WG interested in standardizing (Proxy) Mobile-IPv6 based solutions?

- These 3 drafts can be taken as starting point
 - Been discussed several times
 - Published as academic papers
 - Open source implementations available
 - Used in EU-funded projects