IEEE 802.1 Time-Sensitive Networking (TSN)

János Farkas, Norman Finn, Patricia Thaler Ericsson Huawei Broadcom

IETF 99 – Tutorial July 16, 2017

Before We Start

This presentation should be considered as the personal view of the presenters not as a formal position, explanation, or interpretation of IEEE 802.1.

Outline

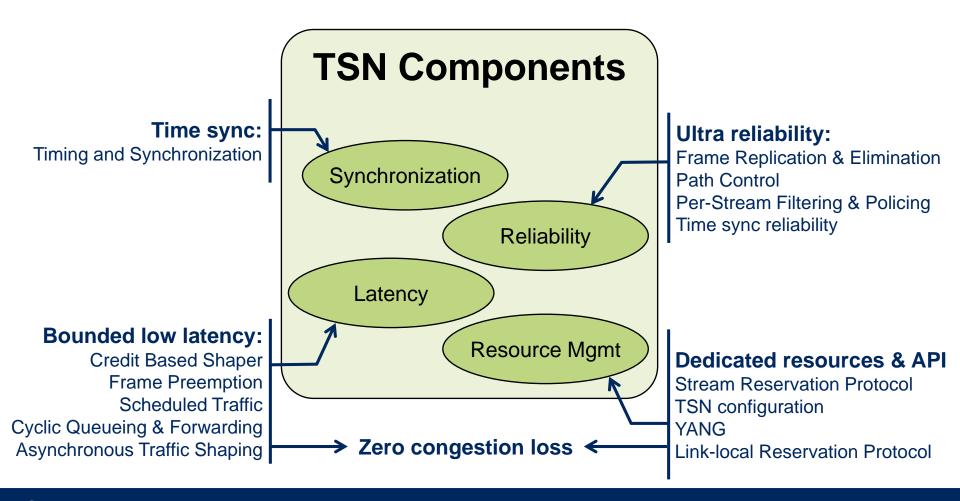
- Introduction
- Reliability
- Deterministic latency
- Resource management
- TSN Summary
- Related work: DetNet

INTRODUCTION

Potential Markets (not comprehensive)

IEEE 802 and 802.1

- IEEE 802 LAN/MAN Standards Committee
 (aka IEEE 802 or LMSC)
 OSI Reference
 - Develop LAN and MAN standards
 - Mainly for link and physical layers of the network stack
- IEEE 802.1
 - 802 LAN/MAN architecture
 - Internetworking among 802 LANs,
 MANs, and other wide area networks
 - 802 Security
 - 802 overall network management, and [⋆] protocol layers above the MAC & LLC layers.

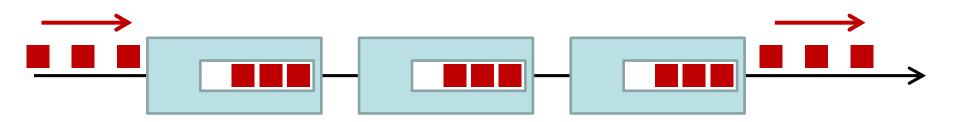

Application Presentation Session Transport Network **IEEE 802.1** Data Link EEE 802 Physical Medium

Model

From AVB to TSN

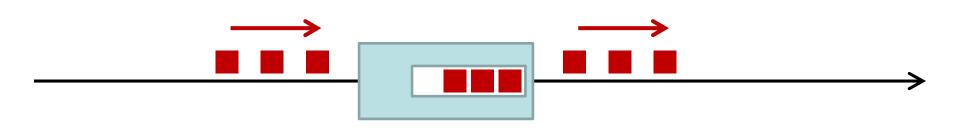
- IEEE 802.1 Audio Video Bridging (AVB) Task Group (TG)
 - Started in 2005
 - Address professional audio, video market
 - Consumer electronics
 - Automotive infotainment
 - Avnu Alliance: associated group for compliance and marketing
- IEEE 802.1 Time-Sensitive Networking (TSN) TG
 - AVB features become interesting for other use cases, e.g.
 - Industrial
 - Automotive
 - AVB was not an appropriate name to cover all use cases
 - AVB TG was renamed to TSN TG in 2012
 - Interworking TG and TSN TG were merged in 2015

Time-Sensitive Networking



Guaranteed data transport with bounded low latency, low delay variation, and extremely low loss

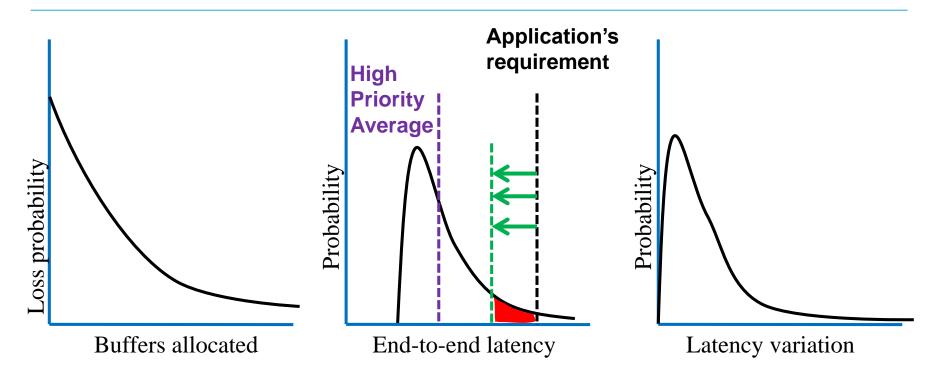
Bounded Latency


- TSN's target applications, real-time networks, require a guaranteed not-to-exceed end-to-end latency for critical data
- Average/mean/best-case latencies are irrelevant
- Many ways to accomplish bounded latency:
 - Throw away late packets; grossly overprovision the network; intensive engineering and testing.
 - Provide zero congestion loss

0 Loss = Bounded Latency

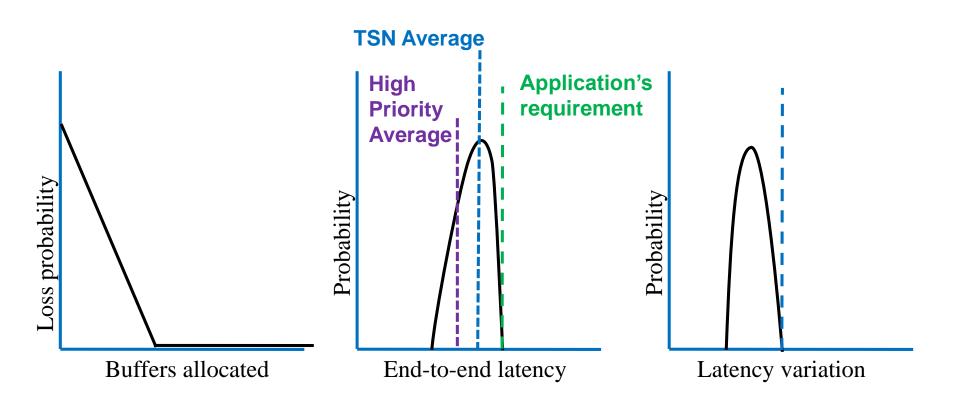
- Given:
 - Constant input rate
 - Finite buffer capacity
 - 0 packets lost
- End-to-end latency is bounded

How to Get 0 Congestion Loss



- At every hop:
 - Packets/interval in == packets/interval out
- But:
 - Packetized data is not a constant-rate bit stream
 - Different flows' optimal transmit times can conflict
- So, gaps and bursts are inevitable

Gaps and Bursts

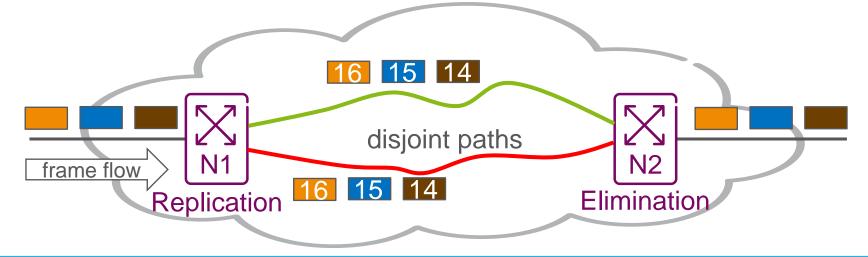

- 1. Reserve buffer space and bandwidth resources before the critical flow starts
- 2. Use queuing/reservation disciplines that strictly limit inter-flow interference and provide predictable gap/burst behavior
- 3. Use extra buffers for known delay variations (e.g., forwarding delay)

Traditional Service

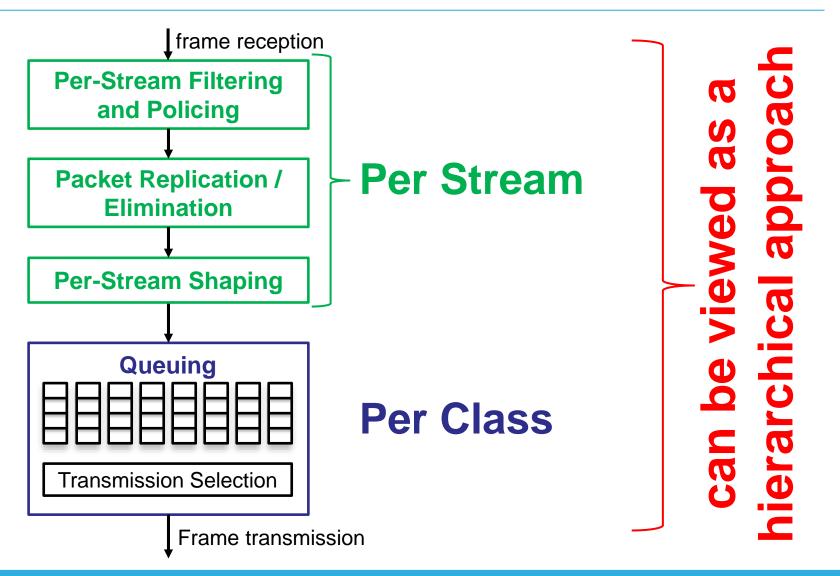
- Curve have long tails
- Average latency is good
- Lowering the latency means losing packets (or grossly overprovisioning)

TSN Service

- Packet loss is now due to equipment failure
- Average latency may be larger, but no tails


Bottom Line: Why TSN?

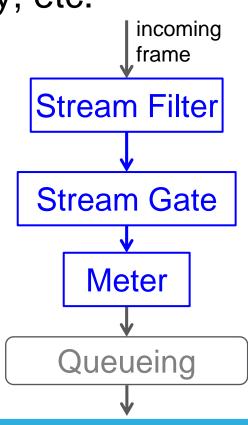
- Without TSN
 - Network engineering
 - Bandwidth, over-provisioning
 - Testing
- With TSN
 - Way easier to engineer
 - Works even in hard-to-test corner cases
 - Way cheaper


RELIABILITY

Frame Replication and Elimination

- Avoid frame loss due to equipment failure (802.1CB)
- Per-packet 1+1 (or 1+n) redundancy
 - NO failure detection / switchover
- Send packets on two (or more) disjoint paths, then combine and delete extras

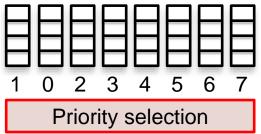
Illustration of QoS & Reliability Functions



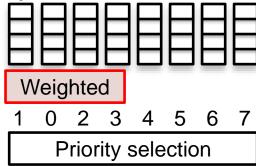
Policing

- Every frame can be marked "green" or "yellow" using the Drop Eligible bit of VLAN tags
- "red" are dropped
- "yellow" frames have a higher probability of being discarded than "green" frames
- Policing is done per input port, but only after it is determined that a frame can be delivered to some port. Frames that are dropped by the forwarding mechanism are not policed.
- Policing algorithm is from MEF Forum spec 10.3 (see also RFC 2963)

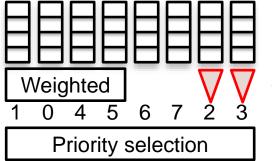
Per-Stream Filtering and Policing


- Protection against bandwidth violation, malfunctioning, malicious attacks, etc. (802.1Qci)
- Decisions on per-stream, per-priority, etc.
- Stream Filter
 - Filters, Counters
- Stream Gate
 - Open or Closed
 - can be time-scheduled
- Meter
 - Bandwidth Profile of MEF 10.3
 - Red/Yellow/Green Marking

DETERMINISTIC LATENCY

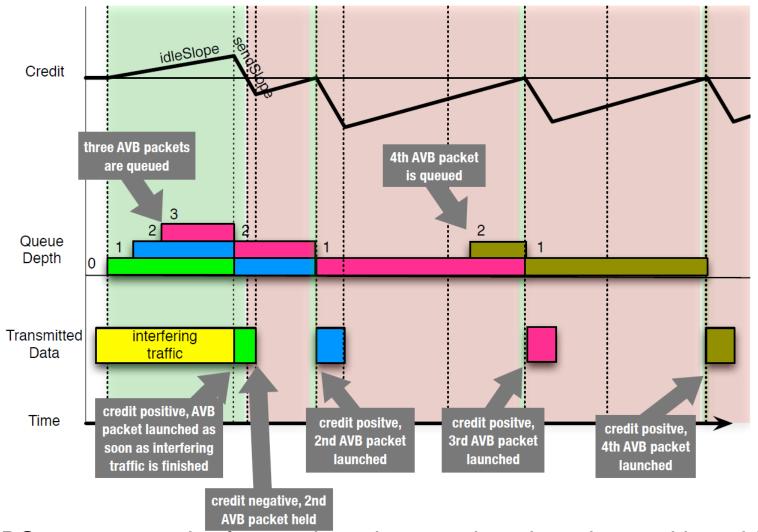

Priority and Weighted Queuing

• Strict Priority (802.1Q-1998)


Highest priority: 7

- Weighted queues (802.1Qaz)
 - Standard management hooks for weighted priority queues without over-specifying the details

Credit Based Shaper


- - Shaped queues have higher priority than unshaped queues
 - Shaping still guarantees bandwidth to the highest unshaped priority (7)

← Highest priority for shaped queues

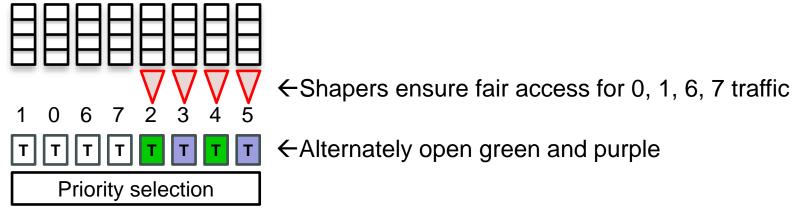
- CBS is similar to the typical run rate/burst rate shaper, but with really useful mathematical properties
 - Only parameter = bandwidth
 - The impact on other queues of any number of adjacent shapers is the same as the impact of one shaper with the same total bandwidth.

Credit Based Shaper – Example

CBS spaces out the frames in order to reduce bursting and bunching

Scheduled Traffic

- Reduces latency variation for Constant Bit Rate (CBR) streams, which are periodic with known timing

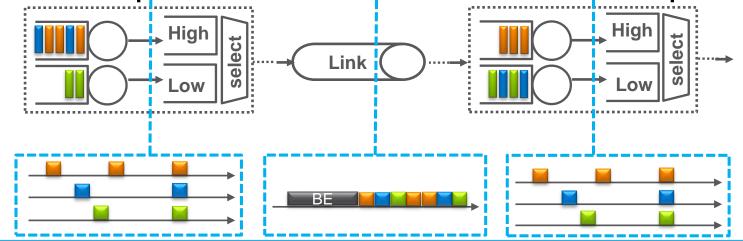

Weighted

Priority selection

- Time-gated queues
- Gate: Open or Closed —
- Periodically repeated time-schedule
- Time synchronization is needed

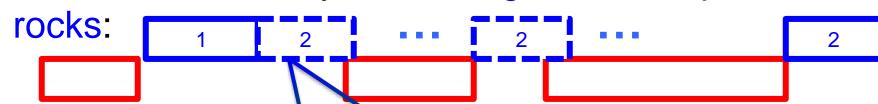
Cyclic Queuing and Forwarding

- Double buffers (802.1Qch) are served alternate using time-gated control
- Two pairs: 2–3 and 4–5 in this example


 If the wire length and bridge transit time are negligible compared to the cycle time, double buffers are sufficient:

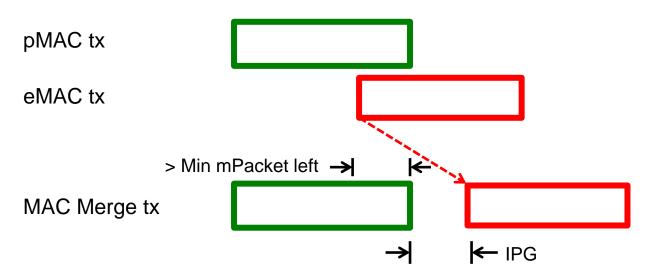
```
Dead-time pad→ ← Frames being received

For next cycle → ← Output in progress
```

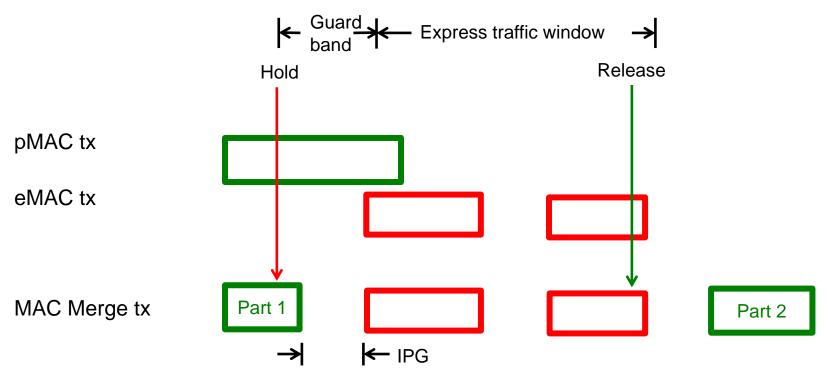

Asynchronous Traffic Shaping

- Zero congestion loss without time sync (P802.1Qcr)
- Similar to per-flow IntServ shaping, except that:
 - All flows from one input port to same output port share the same queue
 - One shaper state machine per flow, and the right shaper applied to the packet upfront of the queue
- Fewer queues, but same number of shapers

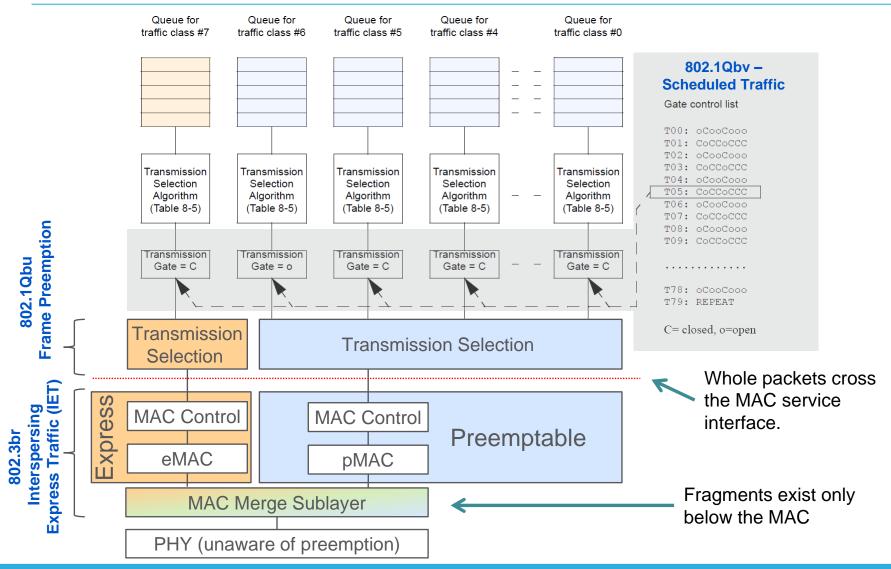
Frame Preemption


- Express frames suspend the transmission of preemptable frames (802.3br and 802.1Qbu)
 - It is link local per hop, i.e., it is not IP fragmentation
- Scheduled rocks of critical packets in each cycle:
- Conflict excessively with non-guaranteed packet

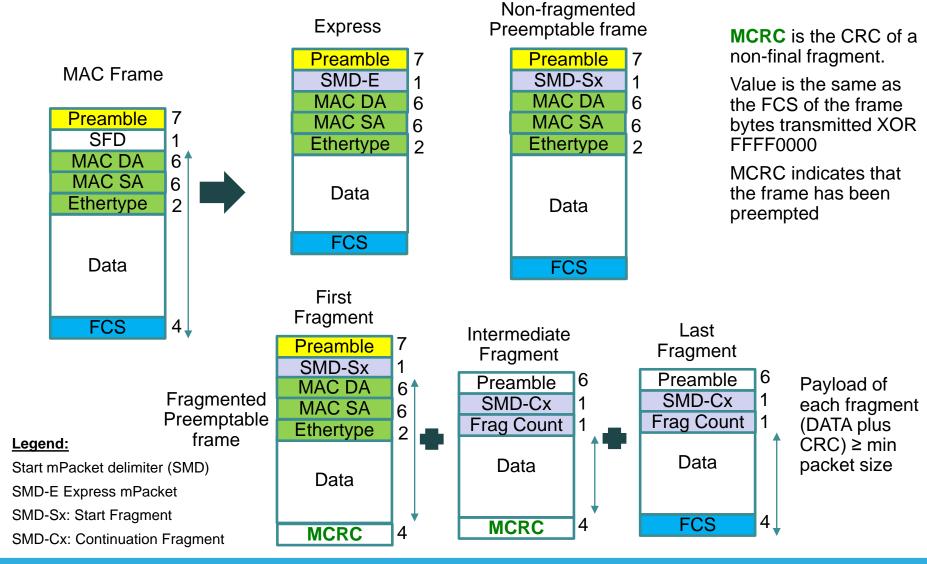
Problem solved by preemptive sand between the



Without Hold and Release

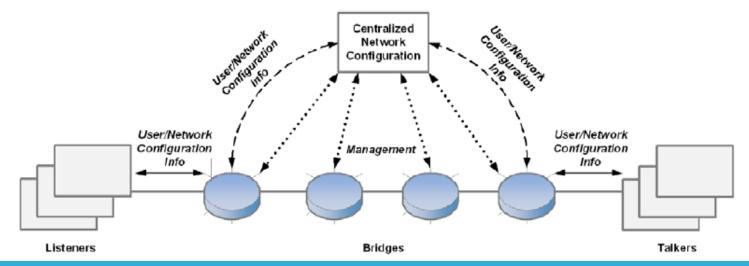

- Preemption isn't instantaneous.
- Packets with less than min packet size (64 octets) left to transmit or packets less than 123 octets can't be preempted.
- In many use cases, this delay is short enough but not in all cases.

With Hold and Release



 Hold primitive can preempt packets before a the start of a scheduled rock

Preemption with Scheduling


mPacket Format

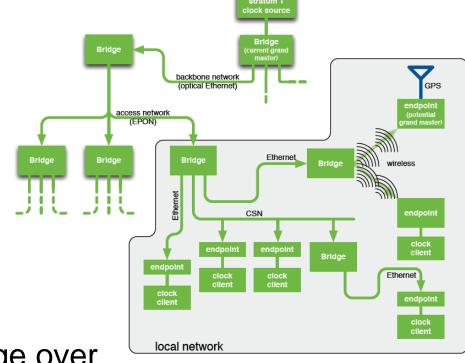
DEDICATED RESOURCES

TSN Configuration

- TSN configuration (P802.1Qcc)
- Information model & YANG
- Configuration Models
 - Fully Distributed Model
 - Fully Centralized Model
 - Centralized Network / Distributed User Model

Reservation Protocol

- Stream Reservation Protocol (SRP 802.1Qat)
 - Advertises streams
 - Registers the path of streams
 - Calculates the worst-case latency
 - Establishes an AVB domain
 - Reserves the bandwidth for streams
- SRP enhancements (P802.1Qcc)
- Link-local Registration Protocol (LRP P802.1CS)
 - Replicate a registration including changes
 - Optimized for databases on the order of 1 Mbyte
 - Not tied to bridges

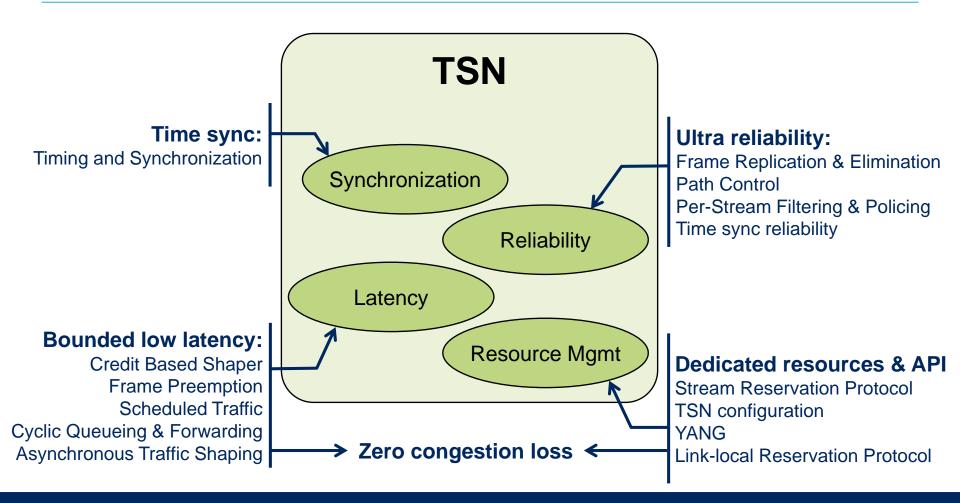

NO TIME TO TALK ABOUT

Timing & Synchronization

A profile of IEEE 1588v2 for Layer 2 Ethernet

(P802.1AS-Rev)

- Redundancy
 - Redundant paths
 - Redundant GMs
- Improved scalability
- Improved support for long chains, rings
- More responsive
- Faster Grand Master change over
- Reduce Best Master Clock Algorithm (BMCA) convergence time
- Multiple domains with synchronization information



Security

- Port-based Network Access Control (802.1X)
 - Defines encapsulation of Extensible Authentication Protocol (EAP) over IEEE 802
 - Widely deployed on both wired and Wi-Fi networks
- MAC Security (MACsec) (802.1AE)
 - MACsec secures a link not a conversation
 - MACsec counters 802.1X man-in-the-middle attacks
- Secure Device Identity (802.1AR)
 - Supports trail of trust from manufacturer to user
 - Defines how a Secure Device Identifier may be cryptographically bound to a device to support device identity authentication

SUMMARY

TSN Summary

Guaranteed data transport with bounded low latency, low delay variation, and extremely low loss

Related Work: DetNet

- IETF Deterministic Networking WG provides Layer 3 aspects in support of applications requiring deterministic networking
- Collaboration between DetNet and TSN to define a common architecture
- DetNet covers
 - characterization of flows
 - data plane, including encapsulation
 - required forwarding behaviors

Q&A

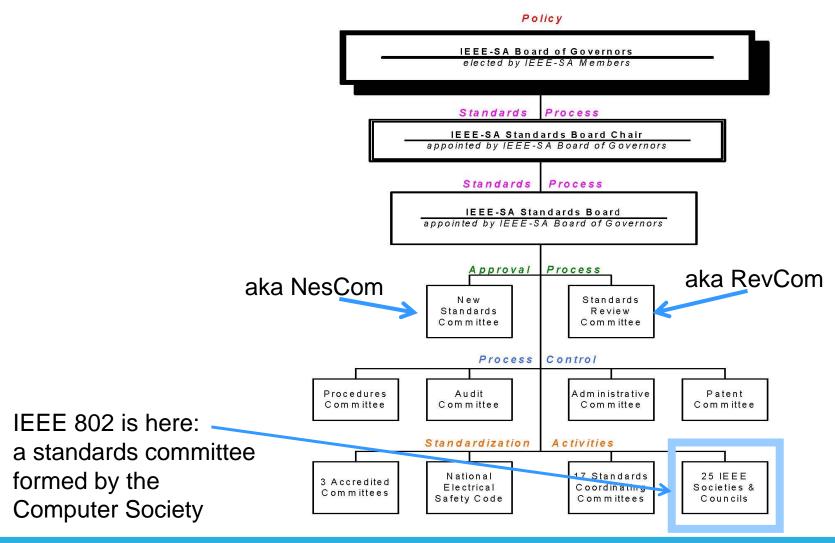
Survey:

https://www.surveymonkey.com/r/99ieee

Thank You!

FURTHER READING

Further Reading


- http://www.ieee802.org/1, http://www.ieee802.org/1/pages/tsn.html
- Introduction to IEEE 802.1 TSN
 http://www.ieee802.org/1/files/public/docs2017/tsn-farkas-intro-0517-v01.pdf
- Tutorial on IEEE 802 Ethernet Networks for Automotive
 http://www.ieee802.org/802_tutorials/2017-07/tutorial-Automotive-Ethernet-0717-v02.pdf
- IEEE 802.1 TSN for Automotive Networks flyer http://standards.ieee.org/downloads/TSN for Automotive Networks.pdf
- IEEE 802.1 TSN for Industrial Networks flyer http://standards.ieee.org/downloads/TSN_for_Industrial_Networks.pdf
- "A Time-Sensitive Networking Primer: Putting It All Together" https://drive.google.com/file/d/0B6Xurc4m_PVsZ1lzWWoxS0pTNVE/view?usp=sharing
- "Heterogeneous Networks for Audio and Video: Using IEEE 802.1 Audio Video Bridging" http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6595589
- Tutorial on IEEE 802 Ethernet Networks for Automotive http://www.ieee802.org/Tutorials.shtml
- Tutorial on IEEE 802.3br Interspersing Express Traffic (IET) and IEEE 802.1
 Time-Sensitive Networking http://www.ieee802.org/802_tutorials/2015-03/8023-IET-TF-1501-Winkel-Tutorial-20150115_r06.pptx
- Tutorial on Deterministic Ethernet http://www.ieee802.org/802 tutorials/2012-11/8021-tutorial-final-v4.pdf
- Tutorial on IEEE 802.1Q at IETF 86 https://www.ietf.org/meeting/86/tutorials/86-IEEE-8021-Thaler.pdf

Further Reading

- IEEE Std 802.1AE-2006 MAC Security
- <u>IEEE Std 802.1AEbn-2011</u> Amendment: GCM-AES-256 Cipher Suite
- <u>IEEE Std 802.1AEbw-2013</u> Amendment: Extended Packet Numbering
- IEEE Std 802.1X-2010 Port-Based Network Access Control
- IEEE Std 802.1Xbx-2014 Amendment: MAC Security Key Agreement Protocol (MKA) Extensions
- P802.1AR-Rev/D2.2 Secure Device Identity
- P802.1Xck Amendment: YANG Data Model
- RFC 7030 Enrollment over Secure Transport

BACKUP

IEEE Standards Organization

All Those Dots

- 802.1 Bridging and Architecture

 generally the top of the link layer
- 802.3 Ethernet
- 802.11 Wireless LAN (WLAN)
- 802.15 Wireless Specialty Networks (WSN)
- 802.16 Broadband Wireless Access (BWA)
- 802.18 Radio Regulatory TAG
- 802.19 Coexistence
- 802.21 Media Independent Handover
- 802.22 Wireless Regional Area Networks (WRAN)
- 802.24 Vertical Applications TAG

TAG = Technical Advisory Group

IEEE 802.1 Working Group

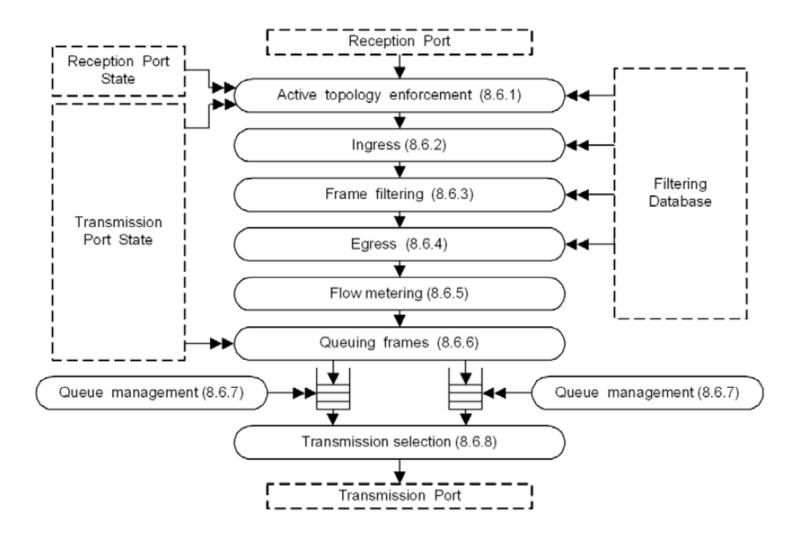
- 802 LAN/MAN architecture, internetworking among 802 LANs, MANs and other wide area networks, 802 Security, 802 overall network management, and protocol layers above the MAC & LLC layers.
- Chair: Glenn Parsons
- Vice-chair: John Messenger
- Addressing and Data Center Bridging (DCB) TG
 - Chair: Patricia Thaler
- Maintenance TG
 - Chair: John Messenger
- OmniRAN TG (Model of IEEE 802 Access Networks)
 - Chair: Maximilian Riegel
- Security TG
 - Chair: Michael Seaman
- Time-Sensitive Networking (TSN) TG
 - Chair: János Farkas

IEEE 802.1 Standards

- The ones with capital letters, e.g. 802.1Q or 802.1AX are independent standards
- Amendments to these standards are identified by lower case letters e.g., 802.1Qbv or 802.1AEcg
- Periodically the amendments get merged into a revision of the main standard, e.g., 802.1Qav is now part of 802.1Q-2014
- 802.1Q can be considered as many individual standards (RFCs) integrated into a single document
 - Clauses 6 through 9 give a general overview of the 802.1Q bridge architecture
 - To get oriented on an additional area, it's best to read the Clause titled the "Principles of <area>"
 - Once oriented, references in the subclause of Clause 5 Conformance for the relevant device can be helpful

Basic Principles

- MAC addresses are "identifier" addresses, not "location" addresses
 - This is a major Layer 2 value, not a defect!
- Bridge forwarding is based on
 - Destination MAC
 - VLAN ID (VID)
- Frame filtering for only forwarding to proper outbound ports(s)
 - Frame is forwarded to every port (except for reception port) within the frame's VLAN if it is not known where to send it
 - Filter (unnecessary) ports if it is known where to send the frame (e.g. frame is only forwarded towards the destination)
- Quality of Service (QoS) is implemented after the forwarding decision based on
 - Priority
 - Drop Eligibility
 - Time


AVB Standards

- IEEE Std. 802.1AS-2011 generalized Precision Time Protocol (gPTP)
 - A Layer 2 profile of the IEEE 1588 Precision Time Protocol (PTP)
- IEEE Std. 802.1Qav Forwarding and Queuing of Time-Sensitive Streams (FQTSS):
 - Specifies Credit-Based Shaper (CBS)
- IEEE Std. 802.1Qat Stream Reservation Protocol (SRP)
 - Registration and reservation of time-sensitive streams
- IEEE Std. 802.1BA AVB Systems
 - Provides an overall AVB architecture and AVB profiles
- CBS + SRP to provide delays under 250 µs per bridge

TSN Standards and Projects

- 802.1Qbu Frame Preemption
- 802.1Qbv Enhancements for Scheduled Traffic
- 802.1Qca IS-IS Path Control and Reservation (PCR)
- 802.1Qch Cyclic Queuing and Forwarding
- 802.1Qci Per-Stream Filtering and Policing
- P802.1Qcc Stream Reservation Protocol (SRP) Enhancements
 & Performance Improvements and TSN configuration
- P802.1Qcj Auto-attach to PBB services
- P802.1Qcp YANG Data Model
- P802.1Qcr Asynchronous Traffic Shaping (ATS)
- P802.1AS-Rev Timing and Synchronization Revision
- 802.1CB Frame Replication and Elimination for Reliability
- P802.1CM Time-Sensitive Networking for Fronthaul
- P802.1CS Link-local Registration Protocol (LRP)

Forwarding Process in 802.1Q

