
BBR Congestion Control:

IETF 99 Update

Neal Cardwell, Yuchung Cheng,

C. Stephen Gunn, Soheil Hassas Yeganeh

Ian Swett, Jana Iyengar, Victor Vasiliev

Van Jacobson

https://groups.google.com/d/forum/bbr dev

1IETF 99: Prague, July 17, 2017

https://groups.google.com/d/forum/bbr-dev
https://groups.google.com/d/forum/bbr-dev

- Review of BBR [also see: IETF 97 | IETF 98]
- New Internet Drafts specifying BBR (2)

- Delivery rate estimation: draft-cheng-iccrg-delivery-rate-estimation
- BBR congestion control algorithm: draft-cardwell-iccrg-bbr-congestion-control

- Active and upcoming work
- BBR deployment update: BBR now also used for QUIC traffic on google.com/YouTube

2

Outline

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control

- BBR motivated by problems with loss-based congestion control (Reno, CUBIC)
- Packet loss alone is not a good proxy to detect congestion
- If loss comes before congestion, loss-based CC gets low throughput

- 10Gbps over 100ms RTT needs <0.000003% packet loss (infeasible)
- 1% loss (feasible) over 100ms RTT gets 3Mbps

- If loss comes after congestion, loss-based CC bloats buffers, suffers high delays

3

The problem: loss-based congestion control

https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/draft-ietf-tcpm-cubic
https://tools.ietf.org/html/draft-ietf-tcpm-cubic-04#section-5.2

BBR (Bottleneck BW and RTT)

- Model network path: track windowed max BW and min RTT on each ACK
- Control sending rate based on the model
- Sequentially probe max BW and min RTT, to feed the model samples
- Seek high throughput with a small queue

- Approaches maximum available throughput for random losses up to 15%
- Maintains small, bounded queue independent of buffer depth

4

BBR CUBIC / Reno Vegas DCTCP

Congestion signal (Bottleneck)
BW & RTT

Loss RTT & Loss ECN & Loss

(Primary) controller Pacing rate cwnd cwnd cwnd

Delivery rate estimation: Internet Draft

- draft-cheng-iccrg-delivery-rate-estimation
- On each ACK, provides a sample with:

- 1: estimated rate at which network delivered the last flight of data packets
- 2: whether this rate was application-limited (app ran out of data to send)

- Why a separate draft for delivery rate estimation?
- Decomposes BBR into simpler pieces (sampling / modeling / control)
- Can be implemented separately from BBR (e.g., in Linux TCP)
- Is useful outside BBR (e.g., picking rate for adaptive bitrate streaming)

5

https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation

Delivery rate estimation: Design Principles

- Design principles
- Purely passive
- Generic: independent of congestion control or transport-specific mechanisms

- So far: Linux TCP (GPLv2 | BSD style license), QUIC (.cc | .h BSD style license)
- Track application-limited rate samples
- Constant time computation
- Err on the side of underestimating (rather than overestimating)
- Continuous feedback on any ACK (e.g., SACK, non-SACK dupacks, etc.)
- Use at least a full round of packets, rather than 1 packet

- Main alternative: packet dispersion metrics (inter-ACK spacing)
- Various approaches: packet pair, packet train, chirping
- Challenges:

- ACK compression, ACK aggregation/decimation, stretch ACKs
- Jitter/noise

6

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_rate.c
https://groups.google.com/forum/#!msg/bbr-dev/X0LbDptlOzo/EVgkRjVHBQAJ
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/bandwidth_sampler.cc
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/bandwidth_sampler.h
https://www.ietf.org/proceedings/80/slides/iccrg-0.pdf

77

Slope of the delivery curve:
 ack_rate = (data delivered between ACKs)/

 (time elapsed between ACKs)
 = Δdelivered /Δtime

Delivery rate estimation: tracking the ACK rate

time

da
ta

 d
el

iv
er

ed

8

Why not use Δdelivered / RTT?

This can badly overestimate delivery rate.

Caveat: why not just Δdelivered/RTT?

time

da
ta

 d
el

iv
er

ed

Google Confidential and Proprietary

- ACK compression ("aggregation", "decimation", "stretching" ...):
- What it is: ACK are delayed and then arrive in a burst
- Cause: receiver or middlebox
- Frequency: prevalent; very common in wifi, cellular, cable modem paths
- Result: can result in excessive ACK rate samples

ACK compression

9

Google Confidential and Proprietary

"real" bandwidth: ~8 9Mbps
ACK rate sample: ~27Mbps
cause: ACK compression

ACK compression: an example

10

ack_rate

Google Confidential and Proprietary

- Our current approach is to simply filter out "implausibly high" ACK rates:
- ACK rate cannot physically exceed send rate on a sustained basis
- For each flight of data delivered between a send and ACK...

- send_rate: rate at which flight is sent
- ack_rate: rate at which flight is ACKed
- delivery_rate = min(send_rate, ack_rate)

- This can be improved, to more thoroughly filter out implausible ACK rates
- An active area of work for our team

Filtering out ACK compression

11

Google Confidential and Proprietary

delivery_rate = send_rate

Delivery rate sample with send_rate filtering:
send_rate is lower, thus:

delivery_rate = send_rate

Filtering out ACK compression: an example

12

Google Confidential and Proprietary

se
nd

_ra
te

P.sent_time

time

da
ta

 d
el

iv
er

ed

P.first_sent_time

send_elapsed

Delivery rate sampling: send_rate

13

da
ta

_a
ck

ed

send_rate =
 data_acked /
 (P.sent_time
 P.first_sent_time)

Google Confidential and Proprietary

ac
k_

rat
e

time

da
ta

 d
el

iv
er

ed

P.delivered_time

C.delivered_time

ack_elapsed

Delivery rate sampling: ack_rate

14

da
ta

_a
ck

ed

ack_rate =
 data_acked /
 (C.delivered_time
 P.delivered_time)

Google Confidential and Proprietary

se
nd

_ra
te

ac
k_

rat
e

time

da
ta

 d
el

iv
er

ed
Delivery rate sampling: delivery_rate

15

delivery_rate =
 min(send_rate,
 ack_rate)

Google Confidential and Proprietary

- Goal: track whether rate measures sender behavior (app-limited) or other bottleneck
- Knowing if a rate sample is app-limited is critical
- Congestion control wants to adapt to network rate, not application rate

- Rate sample is marked app-limited if app ran out of data to send
- App-limited moments create a "bubble" of idle time in data pipeline

- Algorithm:
- Upon app write(), transport marks flow app-limited if all conditions hold:

- Transport send buffer has less than 1*SMSS of unsent data
- Flow is not currently in process of transmitting a packet
- Data estimated to be in flight is less than cwnd
- All the packets marked lost have been retransmitted

- Upon ACK, clear app-limited mark if all app-limited packets have been ACKed

Detecting application-limited delivery rates

16

Google Confidential and Proprietary

Tracking application-limited behavior

17time

pa
ck

et
s

de
liv

er
ed

ACKs
non app-limited samples

C.app_limited

When sender becomes app-limited, mark "bubble" with: C.app_limited = C.delivered + C.pipe
Sent packets are marked app-limited for the next round trip (while C.app_limited !=0).
When C.delivered passes C.app_limited, "bubble" is cleared by zeroing C.app_limited.

se
nd

s

app-limited samples
non app-limited samples

BBR congestion control: the big picture

18

Model:
Max BW,
Min RTT

BW, RTT samples

BW Probing
State Machine Pacing Engine

Rate

Data

Paced
Data

Increases / Decreases inflight
around target inflight

inflight

time

target inflight = est. BDP

RTT cwnd

 quantum

BBR

BBR congestion control algorithm: Internet Draft

- draft-cardwell-iccrg-bbr-congestion-control
- Network path model

- BtlBw: estimated bottleneck bw available to the flow, from windowed max bw
- RTprop: estimated two-way propagation delay of path, from windowed min RTT

- Target operating point
- Rate balance: to match available bottleneck bw, pace at or near estimated bw
- Full pipe: to keep inflight near BDP, vary pacing rate

- Control parameters
- Pacing rate: max rate at which BBR sends data (primary control)
- Send quantum: max size of a data aggregate scheduled for send (e.g. TSO chunk)
- Cwnd: max volume of data allowed in-flight in the network

- Probing state machine
- Using the model, dial the control parameters to try to reach target operating point

19

https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control

time

 Startup

 | |

 | |

 | Drain

 | |

 | |

 ProbeBW

 | |

 | | |

 | |

 | |

 ProbeRTT

- State machine for 2-phase sequential probing:
- 1: raise inflight to probe BtlBw, get high throughput
- 2: lower inflight to probe RTprop, get low delay
- At two different time scales: warm-up, steady state...

- Warm-up:
- Startup: ramp up quickly until we estimate pipe is full
- Drain: drain the estimated queue from the bottleneck

- Steady-state:
- ProbeBW: cycle pacing rate to vary inflight, probe BW
- ProbeRTT: if needed, a coordinated dip to probe RTT

BBR: probing state machine

20

inflight
Est. BDP

BBR: current areas of research focus

- ACK aggregation (wifi, cellular, DOCSIS)
- Improving bandwidth estimation
- Provisioning enough data in flight

- Behavior in shallow buffers
- Datacenter behavior with large numbers of flows

21

Conclusion

- BBR Internet Drafts are out and ready for review/comments:
- Delivery rate estimation: draft-cheng-iccrg-delivery-rate-estimation
- BBR congestion control algorithm: draft-cardwell-iccrg-bbr-congestion-control

- Status of BBR:
- New: BBR is now deployed for QUIC on Google.com, YouTube

- With results improvements similar in character to those for TCP
- All Google/YouTube servers and datacenter WAN backbone connections use BBR

- Better performance than CUBIC for web, video, RPC traffic
- Code is available as open source in Linux TCP (dual GPLv2/BSD), QUIC (BSD)
- Work under way for BBR in FreeBSD TCP @ NetFlix

- Actively working on improving the BBR algorithm
- Always happy to hear test results or look at packet traces...

22

https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control
http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=0f8782ea14974ce992618b55f0c041ef43ed0b78
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/bbr_sender.cc

 Q & A

https://groups.google.com/d/forum/bbr dev

Internet Drafts, research paper, code, mailing list, talks, etc.

Special thanks to Eric Dumazet, Nandita Dukkipati, Pawel Jurczyk, Biren Roy,
David Wetherall, Amin Vahdat, Leonidas Kontothanassis, and
{YouTube, google.com, SRE, BWE} teams.

23

https://groups.google.com/d/forum/bbr-dev
https://groups.google.com/d/forum/bbr-dev

Backup slides from previous BBR talks...

24

25

De
liv

er
y

ra
te

BDP BDP BufSize

RT
T

Loss based CC (CUBIC / Reno)

amount in flight

Loss based congestion control in deep buffers

26

De
liv

er
y

ra
te

BDP

RT
T

amount in flight

Loss based congestion control in shallow buffers

Loss based CC (CUBIC / Reno)

BDP BufSize

Multiplicative Decrease upon
random burst losses

=> Poor utilization

27

De
liv

er
y

ra
te

BDP BDP BufSize

RT
T

Optimal: max BW and min RTT (Kleinrock)

amount in flight

Optimal operating point

BDP = (max BW) * (min RTT)

28

De
liv

er
y

ra
te

BDP BDP BufSize

RT
T

amount in flight

Est min RTT = windowed min of RTT samples

Est max BW = windowed max of BW samples

Estimating optimal point (max BW, min RTT)

29

De
liv

er
y

ra
te

BDP BDP BufSize

RT
T

amount in flight

Only
min RTT is
visible

Only
max BW
is visible

To see max BW, min RTT: probe both sides of BDP

Confidential Proprietary

optimal operating point

30

BBR: model based walk toward max BW, min RTT

Confidential Proprietary 31

STARTUP: exponential BW search

Confidential Proprietary 32

DRAIN: drain the queue created during STARTUP

Confidential Proprietary 33

PROBE_BW: explore max BW, drain queue, cruise

Confidential Proprietary 34

Minimize packets in flight for max(0.2s, 1 round trip)
after actively sending for 10s. Key for fairness among
multiple BBR flows.

PROBE_RTT: drains queue to refresh min RTT

35

RT
T

(m
s)

Da
ta

 se
nt

 o
r A

CK
ed

 (M
By

te
s)

STARTUP DRAIN PROBE_BW

CUBIC (red)
BBR (green)
ACKs (blue)

35

BBR and CUBIC: Start up behavior

Cubic (Hystart) BBR

Initial rate 10 packets / RTT

Acceleration 2x per round trip

Exit
acceleration

A packet loss
or
significant RTT
increase

Delivery rate
plateaus

BBR: faster for short flows, too

50Mbps

BBR and Cubic time series overlaid. BBR downloads 1MB 44% faster than Cubic. Trials
produced over LTE on Neal’s phone in New York

BBR

CUBIC

Confidential Proprietary

1. Flow 1 briefly slows down to reduce its queue every 10s (PROBE_RTT mode)
2. Flow 2 notices the queue reduction via its RTT measurements
3. Flow 2 schedules to enterslow down 10 secs later (PROBE_RTT mode)
4. Flow 1 and Flow 2 gradually converge to share BW fairly

bw = 100 Mbit/sec
path RTT = 10ms

37

BBR multi flow convergence dynamics

BBR vs CUBIC: synthetic bulk TCP test with 1 flow, bottleneck_bw 100Mbps, RTT 100ms 38

BBR: fully use bandwidth, despite high packet loss

39BBR vs CUBIC: synthetic bulk TCP test with 8 flows, bottleneck_bw=128kbps, RTT=40ms

BBR: low queue delay, despite bloated buffers

BBR: robust detection of full pipes > faster start up

- BBR STARTUP: estimate reached full BW if BW stops increasing significantly
- CUBIC Hystart: estimate reached full BW if RTT increases significantly
- But delay (RTT) can increase significantly well before full BW is reached!

- Shared media links (cellular, wifi, cable modem) use slotting, aggregation
- e.g.: 20 MByte transfers over LTE (source: post by Fung Lee on bbr dev list,

2016/9/22):

40

https://groups.google.com/d/msg/bbr-dev/UqbrT0PVg_8/EEUKZNPhAAAJ
https://groups.google.com/d/msg/bbr-dev/UqbrT0PVg_8/EEUKZNPhAAAJ
https://groups.google.com/d/msg/bbr-dev/UqbrT0PVg_8/EEUKZNPhAAAJ

1xCUBIC v 1xBBR goodput: bw=10Mbps, RTT=40ms, 4min transfer, varying buffer sizes

41

Improving dynamics w/ with loss based CC

At first CUBIC/Reno gains an advantage by filling deep buffers

But BBR does not collapse; it adapts: BBR's bw and RTT probing tends to drive system toward fairness

Deep buffer data point: 8*BDP case: bw = 10Mbps, RTT = 40ms, buffer = 8 * BDP

 > CUBIC: 6.31 Mbps vs BBR: 3.26 Mbps

42

BBR and loss based CC in deep buffers: an example

Improving BBR

BBR can be even better:

○ Smaller queues: lower delays, less loss, more fair with Reno/CUBIC
■ Potential: cut RTT and loss rate in half for bulk flows

○ Higher throughput with wifi/cellular/DOCSIS
■ Potential: 10 20% higher throughput for some paths

○ Lower tail latency by adapting magnitude of PROBE_RTT
■ Potential: usually PROBE_RTT with cwnd = 0.75*BDP instead of cwnd=4

End goal: improve BBR to enable it to be the default congestion control for the Internet

We have some ideas for tackling these challenges

We also encourage the research community to dive in and improve BBR!

Following are some open research areas, places where BBR can be improved...
43

Open research challenges and opportunities with BBR

Some of the areas with work (experiments) planned or in progress:

● Reducing queuing/losses on shallow buffered networks and/or with cross traffic:
○ Quicker detection of full pipes at startup
○ Gentler PRR-inspired packet scheduling during loss recovery
○ Refining the bandwidth estimator for competition, app-limited traffic
○ Refining cwnd provisioning for TSO quantization
○ More frequent pacing at sub unity gain to keep inflight closer to available BDP
○ Explicit modeling of buffer space available for bandwidth probing

● Improving fairness vs. other congestion controls
● Reducing the latency impact of PROBE_RTT by adaptively scaling probing
● Explicitly modeling ACK timing, to better handle wifi/cellular/cable ACK aggregation

44

https://tools.ietf.org/html/rfc6937

Experiment: modeling available buffer space

Goal: How to reduce buffer pressure and improve fairness in shallow buffers?

What if: we try to use no more than half of flow's estimated share of the bottleneck buffer?

 full_rtt: average of RTT samples in first round of loss recovery phases in last N secs

 if (full_rtt)

 my_buffer_target = (full_rtt min_rtt) * bw / 2

 my_max_cwnd = bw * min_rtt my_buffer_target

Next: how to probe gently but scalably when there are no recent losses?

e.g.: my_buffer_target *= 1.25 for each second of active sending?

45

 March 2017 experiments...

● Reducing queuing/losses on shallow buffered networks and/or with cross traffic:
○ Quicker detection of full pipes at startup
○ Gentler PRR inspired packet scheduling during loss recovery
○ More frequent lower rate pacing to keep inflight closer to available BDP

.... resulting fairness?

In deep buffers, BBR's fairness to Reno matches or exceeds CUBIC's fairness to Reno...

46

https://tools.ietf.org/html/rfc6937

47

In deep buffers: BBR, CUBIC friendliness to 1x Reno

1x BBR

1x Reno

1x Reno

1x CUBIC
10 Mbps bw

40ms RTT

1 MByte buffer

120 sec test

48

1x BBR

4x Reno

4x Reno

1x CUBIC
10 Mbps bw

40ms RTT

1 MByte buffer

120 sec test

In deep buffers: BBR, CUBIC friendliness to 4x Reno

49

2x BBR

16x Reno

16x Reno

2x CUBIC10 Mbps bw

40ms RTT

1 MByte buffer

240 sec test

In deep buffers: BBR, CUBIC friendliness to 16x Reno

