

FACULTY OF SCIENCE Communication Networks

Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks

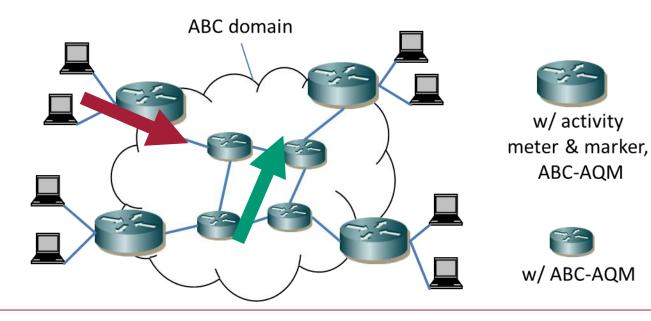
Michael Menth and Nikolas Zeitler

http://kn.inf.uni-tuebingen.de

Outline

- The problem
- Definition of activity
- ► ABC principle
- Experiment setup
- Simulation results
- Related work
- Use cases
- Conclusion & outlook

Inspired by congestion policing using congestion exposure (ConEx) signals

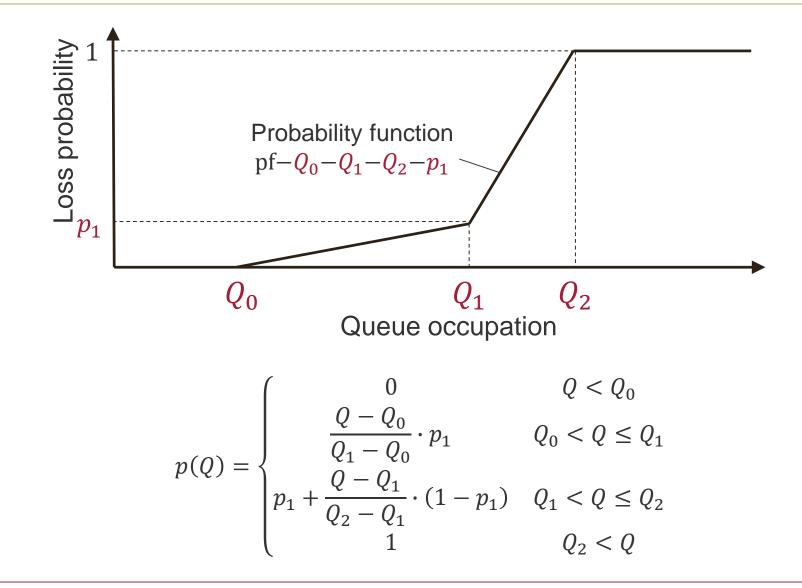

- Scenario
 - Bottleneck link shared by multiple users, congestion may occur
 - Flows may be transmitted over different transport protocols
 UDP flows can achieve higher rates than TCP flows
 - TCP users may have different number of flows
 Users with more flows can achieve higher rates (as TCP attempts to be per-flow fair)
 - How to share bandwidth fairly among users?
- If pkts can be related to users
 - Weighted fair queueing (WFQ) may enforce peruser fair bandwidth sharing
- If pkts cannot be related to users
 - WFQ does not work
 - ABC may be used

ABC Principle – Architecture

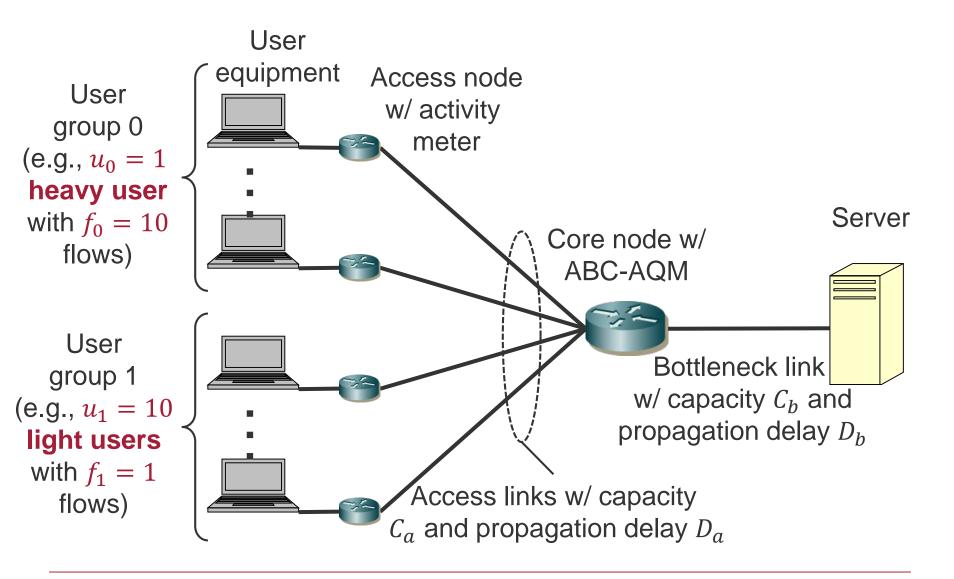
- Per-domain concept
 - Configuration
 - Trust
- Access nodes
 - Connect user equipment
 - Have activity meter
 - Add activity *A* to packet headers

- Core and access nodes
 - Run ABC-AQM (active queue management)
 - Drop packets during congestion depending on their activity
- Core nodes do not hold per-user/flow states

- Definition of activity
 - R_r : a user's assigned reference rate
 - *R_t*: a user's recent transmission rate
 - $A = log_2\left(\frac{R_t}{R_r}\right)$: a user's activity
 - Indicates how much a users transmission rate exceeds its reference rate
- Activity meter
 - Computes activity A per packet and adds it to the header
 - Implemented through a token-based algorithm
 - Configured with
 - Reference rate R_r (per user)
 - Inertia I (time scale parameter, per domain)
 - Burst allowance *B* (to ignore first *B* bytes after silence, per domain)


- Operation per packet arrival
 - Track average activity A_{avg}
 - Drop packet depending on
 - Link congestion
 - Activity A in packet header

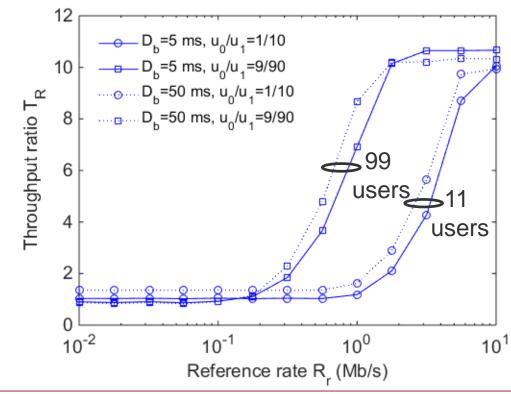
Average activity: $A_{avg} = w_A \cdot A_{avg} + (1 - w_A) \cdot A$


Use some existing AQM based on drop probabilities

- Adapt drop probability: $p_A = p^{2^{-\gamma \cdot (A A_{avg})}}$
 - Differentiation factor $\gamma \ge 0$
 - $p_A > p$ for large activities
 - $p_A < p$ for small activities

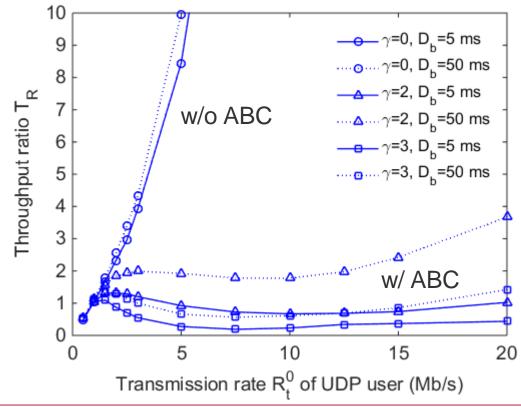
- Experiment
 - User group 0: 1 heavy user with 10 TCP flows
 - User group 1: 10 light users with only 1 TCP flow

- Performance metrics
 - Average throughput per user
 - $-\overline{T_0}$: for user group 0
 - $-\overline{T_1}$: for user group 1


• Throughput ratio
$$T_R = \frac{\overline{T_0}}{\overline{T_1}}$$

Throughput ratio T_R depending on differentiation factor γ .											
No differentiation, no fairness Almost fair											
D_b	users	differentiation factor γ									
(ms)	u_0/u_1	0	1	2	3	4	5				
50	1/10	10.02	2.68	1.71	1.36	1.20	1.10				
	9/90	10.20	1.51	1.03	0.88	0.82	0.80				
5	1/10	10.14	1.90	1.26	1.03	0.94	0.89				
	9/90	10.76	1.37	1.01	0.91	0.87	0.84				
$1 \log \alpha = 2$ to object a good fairpage confirmed by more experimente											

• Use $\gamma = 3$ to achieve good fairness, confirmed by more experiments



- > Vary reference R_r rate per user
- ▶ ABC enforces fairness if $R_r \leq \frac{c}{u}$
 - C: bottleneck bandwidth
 - *u*: number of users on bottleneck link

- ▶ 1 UDP user vs. 10 users with 1 TCP flow
- ABC protects TCP users against UDP user
- \triangleright $\gamma = 3$ best suited
- Improvement through better AQM possible

Reduced Upload Time

- Experiment setup
 - u₀ = 1 probe user sending a probe of 1 MB
 - *u*₁ background users with
 *f*₁ flows each
 - Performance metric: upload time
 - Link delay D_b
 - 50 ms
 - 5 ms

- Upload time
 - Increases with u_1 and f_1
 - Shorter with ABC
 - Decreases with increasing burst tolerance B

D_b	ABC	В	$f_1 = 1$		$f_1 = 4$	
(ms)		(MB)	$u_1 = 10$	$u_1 = 20$	$u_1 = 10$	$u_1 = 20$
	no	n/a	20.3	29.2	47.7	85.2
		0	9.6	17.9	12.3	21.7
		0.25	8.2	15.7	10.4	17.6
50	yes	0.5	6.1	10.7	8.3	14.0
		0.75	2.2	5.7	6.7	8.1
		1	2.4	2.7	3.3	5.4
		1.25	2.1	3.3	3.3	5.2
	no	n/a	10.3	20.2	34.2	61.4
		0	9.6	17.6	10.1	18.8
		0.25	6.9	13.7	8.3	14.0
5	yes	0.5	4.6	9.5	5.6	10.0
		0.75	1.3	5.4	4.0	6.4
		1	1.0	1.3	1.0	1.4
		1.25	1.0	1.0	1.0	1.0

CSFQ

- [28] I. Stoica, S. Shenker, and H. Zhang: "Core-Stateless Fair Queuing: A Scalable Architecture to Approximate Fair Bandwidth Allocations in High-Speed Networks", IEEE/ACM Transactions on Networking, 11(1), Feb. 2003
- Similar to ABC but measures traffic rate on link to determine drop probabilities ⇒ slower reaction than ABC

ABC

- Uses buffer occupation and AQM to determine drop probabilities
- Extensible towards low-delay communication
 ⇒ Enforce both fairness and low-delay

- ABC fulfills objectives of congestion policing using congestion exposure (ConEx)
 - Fair rate sharing
 - Improved QoE for light users (reduced upload times)
- ABC supports the same uses cases as ConEx
 - Datacenter draft-briscoe-conex-data-centre
 - Mobile access networks RFC7778: Mobile Communication Congestion Exposure Scenario
- ABC protects light users against heavy UDP users
 - Another use case: defense against denial of service attacks

- Activity-based congestion management (ABC)
 - Access node add activity into to packet headers
 - Access and core nodes use it for preferential dropping
 - Enforces per-user fairness (heavy and light users)
 - Protocol-independent, stateless core network
- Presented simulation results
 - Impact of differentiation factor, reference rate
 - Protection against non-responsive traffic
 - Reduced upload time
- ABC supports
 - Different users profiles (reference rates)
 - ConEx use cases (and more)
- Outlook
 - Combine ABC with PIE to achieve fairness and low latency
 - Adapt ABC towards service classes

M. Menth and N. Zeitler: Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks, in Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS), April, 2016, Istanbul, Turkey

Preprint:

https://atlas.informatik.uni-tuebingen.de/~menth/papers/Menth16b.pdf