Publish-Subscribe Deployment Option for the Constrained IoT

draft-gundogan-icnrg-pub-iot-01

Cenk Gündoğan¹

Thomas Schmidt¹ Matthias Wählisch²

¹HAW Hamburg

²Freie Universität Berlin

July 19, 2017

Agenda

Motivation

Publish-Subscribe Option

Publisher Mobility & Network Partitioning

Wrap Up

Scenario: IoT Sensor and Actuator Networks

Objectives

- Sensors produce data
- Immediate data propagation
- Alert notifications

Naïve approach in NDN/CCN: polling

- ⇒ wakes sleepy devices
- ⇒ superfluous traffic

Problem: Data Propagation

Push is bad

- breaks flow balance
- cache poisoning
- DoS

We should preserve the NDN/CCN request response scheme!

But: How do we get data from sensor to consumers?

Agenda

Motivation

Publish-Subscribe Option

Publisher Mobility & Network Partitioning

Wrap Up

Publish-Subscribe Option

Key Features

- Data immediately propagated towards content proxy
- Data is not pushed
- Name advertisements on control plane
 - link-local signaling
- Data is replicated hop-wise on data plane
 - using standard NDN/CCN Interest-Data scheme

PAM: Prefix Advertisement Message broadcast, link-local scoped

FIB	
Prefix	Face
10	f.

PAM: Prefix Advertisement Message broadcast, link-local scoped

FIB fix Face

 $\begin{array}{c|c} \text{Prefix} & \text{Face} \\ \hline /\rho & f_i \end{array}$

PAM: Prefix Advertisement Message broadcast, link-local scoped

Subscribe

Subscribe

Subscribe

Agenda

Motivation

Publish-Subscribe Option

Publisher Mobility & Network Partitioning

Wrap Up

Publisher Mobility

Publisher Mobility

Network Partitioning

Network Partitioning

Agenda

Motivation

Publish-Subscribe Option

Publisher Mobility & Network Partitioning

Wrap Up

Wrap Up

Summarized highlights

- Hop-wise data replication without push
- Decoupling (space, time, synchronicity)
- Data producer mobility
- Resilience in partitioned networks
- Minimal FIB state

Experimental Evaluation

- RIOT & CCN-lite in IoT-Lab testbed
- lacktriangle Large-scale experiments with >300 constrained devices

Comment

The question of PUSH versus PULL seems deep and complicated, but is marked as a "TODO" in the draft

Answer

Will be adressed in version 02

Comment

It really matters whether the Content proxy acts as a "repo" or a "cache". You waffle on this point.

Answer

The Content Proxy acts as a guaranteed cache with content lifetime.

Comment

The prefix advertisement scheme gets a lot of attention compared to other parts, but this devolves essentially to link-state [...] flooding, which is well understood. [...] Are you proposing a protocol like NLSR? Or Chronosync? Or standard LSR to build a tree and then flooding the prefixes over the tree?

Answer

Scheme is not link-state, but distance-vector similar to RPL. Central: propagation of prefix-specific default routes.

Comment

It seems really unsatisfying to put the routing protocol in a control plane that does not reside on top of the existing NDN/CCNx data plane. Even with moderate amounts of traffic, you now have two very different data planes operating in parallel over the same links [...]

Answer

Control plane communication is a specific link-local message exchange. Reusing Interests would lead to semantic overload.

Draft Status

- Draft still in early state
- Subscribe needs more elaboration
- Packet header formats need more elaboration
- ▶ Major update to -02 soon