1 E T F

Discovering Provisioning Domain
Names and Data

draft-bruneau-intarea-provisioning-domains-01

B. Bruneau, P. Pfister, D. Schinazi, T. Pauly, E. Vyncke

Hosts and networks are multi-homed e

Just a few examples...

Mobile SP

Corp. VPN

Phone Connection
Sharing

intarea WG IETF 99

Multi-Homing, the legacy way... e

Public
Address 2

Private
Addresses

Routing and/or DPI

intarea WG IETF 99

Multi-Homed networks in IPv6 et

- Assign provider assigned (PA) addresses to hosts.

e Native to IPv6 hosts (RFC4861, ...)
e HNCP for home networks (RFC7788)
e draft-ietf-rtgwg-enterprise-pa-multihoming-01 for corp. networks.

- Teach the hosts to pick and use multiple addresses.

* |Pv6 source address selection (RFC6724)
e draft-linkova-6man-default-addr-selection-update-00
e Multi-Path TCP (RFC6824)

- Give the host meaningful information about the addresses.

Azure Host

2a01:111:4567:c::1/6
4

Multihoming problem illustrated

2001:4898:cafe:b::1/6
4 Azure

2a01:111::/32

Internal Host

Sl Corporate

Network ISP
North America BB bl 2001:db8::/32

2001:4898::/32 IS T e

Announce ::/
0

¢ Assign 2001:db8:1234::/48

Assign 2a01:110:abcd::/48
Interface assigned:

Which source /
does the o0t bt s

client use? ;lﬁ\

Client generates addresses from RA:
2a01:110:abcd:a::abcd/64
2001:db8:1234:f::dcba/64

From Marcus Kean, Microsoft IT, at V6OPS IETF-99

E T F

Bundling IP address & DNS resolver

Multihoming and CDNs

Name lookups for resources stored on CDNs give
different answers depending on the network connection
Host on homenet may look up name using resolver from
provider A, then connect to CDN using provider B

This will generate support requests

What to do?

Ted Lemon, Homenet WG, IETF-99

1 E T F

Alternative to Bind(socket,
[::]:<port>) ?

* In theory, developers could
* Enumerate all the addresses available on all interface
* Pick the ones that fits the application’s profile
* Bind individual sockets to each selected address

* In practice, few developers do that
* Requires tracking address changes
* Requires testing address properties
* Tends to not be portable

* And it may not even be available in “service level” API

F. Gont, C. Huitema, 6MAN WG, IETF-99

1 E T F

The purpose of this draft is to:

1. Identify Provisioning Domains (PvDs).

[RFC7556] Provisioning Domains (PvDs) are consistent sets of network
properties that can be implicit, or advertised explicitly.

Differentiate provisioning domains by using FQDN identifiers.

2. Give PvD Additional Information.

Name, characteristics, captive portal, etc...

1 E T F

Step 1: Identify PvDs B
With the PvD ID Router Advertisement Option

0 1 2 3
0123456789012345678901234561789°01
s s e s SR S o S S e
| Type | Length | seq |H|L]| Reserved |
e s T S S S S S S e a
| Lifetime |
s Sty S S S e e St
| PvD ID FQDN |
e e e S e ey S

- At most one occurrence in each RA.

- PvD ID is an FQDN associated with options in the RA.

- Implicit PvDs (without option) identified by RA source address and interface.
- L bit to indicate the PvD has DHCPv4 on the link.

- H bit to indicate Additional Information is available with HTTPS.

- Seq. number used for push-based refresh.
- Lifetime to indicate PvD ID lifetime.

Step 2: Get the PvD Additional Data B

—a R

When the H bit is set:
GET https://<pvd-id>/.well-known/pvd (was /pvd.json)

Using network configuration (source address, default route, DNS, etc...)
associated with the received PvD.

intarea WG IETF 99

Step 2: Get the PvD Additional Data

@ HTTP/TLS

When the H bit is set:
GET https://<pvd-id>/.well-known/pvd (was /pvd.json)

Using network configuration (source address, default route, DNS, etc...)

associated with the received PvD.

intarea WG IETF 99

1 E T F

Step 2: Get the PvD Additional Data

"name": "Foo Wireless",
"localizedName": "Foo-France Wifi",
"expires": "2017-07-23T06:00:00Z",
"prefixes" : ["2001:db8:1::/48", "2001:db8:4::/48"],
"characteristics": {
"maxThroughput": { "down":200000, "up": 50000 },

"minLatency": { "down": 0.1, "up": 1 }

Some other examples (see also https://smart.mpvd.io/.well-known/pvd) :

noInternet : true,
metered : true,
captivePortalURL : "https://captive.org/foo.html”

intarea WG IETF 99

E T F

Step 3: Host behavior et e

Hosts and applications behave according to existing
specs on one or more PvDs.

RA 1 RA 2
PvD 1 PVD 2

Default Route Default Route

More Specific Route Address
More Specific Route DNS Address
Address DNS Address

Address
DNS from R1

IPv4 Default Route
IPv4 Address

1 E T F

Implementation status

Linux - https://github.com/IPv6-mPvD

- pvdd: A Daemon to manage PvD IDs
and Additional Data
- Linux Kernel patch for RA processing Networke
- iproute tool patch to display PvD IDs
- Wireshark dissector

During the IETF Hackathon

- OpenWrt support (daemon and GUI)
- i0S support (Captive portal detection)
- NEAT project integration (Tom Jones)

1 E T F

Implementation status

Linux - https://github.com/IPv6-mPvD

- pvdd: A Daemon to manage PvD IDs and Additional Data
- Linux Kernel patch for RA processing
- iproute tool patch to display PvD IDs
- Wireshark dissector

See it in action at bits-
During the IETF Hackathon

- OpenWrt support (daemon and GUI)
- i0S support (Captive portal detection)
- NEAT project integration (Tom Jones)

&-bites this evening

1 E T F

Next steps

» Update the draft based on feedback & hackathon

* Format of PvD ID as plain ASCII
* Use of well-known URL RFC5785 rather than pvd.json

* Feedback, suggestions, ... are welcome

* Become a working group document ?
* BoF at IETF-100 (WG forming) ?

* Working PoC implementations in various OS
* Huge interest of using PvD in V6OPS, 6MAN, CAPPORT, Homenet, ... WG

