Update for the IPPM Framework: Adding Support for IPv6 and IP Options

(IP Options and IPv6 Updates for IPPM's Active Metric Framework: Packets of Type-P and Standard-Formed Packets)

draft-ietf-ippm-2330-ipv6-01

A. Morton, <u>J.Fabini</u>, N.Elkins, M.Ackermann, V.Hegde

mailto:draft-ietf-ippm-2330-ipv6@ietf.org

Background

 The IPPM Framework (RFC2330) identifies two key prerequisites for valid measurements:

1. Valid measurement packets

- "Standard-formed" packets
- "...all metric definitions ... include an implicit assumption that the packet is *standard formed*"...
- Explicit criteria catalogue

2. Result may depend on measurement packet type

- Distinct treatment of measurement packets along the path
- Abstract term: packet of Type-P
- Measurement is representative for any type (Type-P) vs. result is valid for ICMP-packets-64-byte-payload

Motivation and History

- Any {RFC|draft|metric} that references IPv6 is out of scope of the RFC2330 IPPM framework!
 - RFC2330, sec. 15 "...includes a valid IP header: the version field is 4 (later, we will expand this to include 6)"...
- Trigger: GEN-ART review of RFC 2679-bis
 Input by Brian Carpenter: no IPv6 coverage
 - RFC 2679-bis only vs. IPPM update
 - Decision for IPPM update
- IPv6-support for IPPM "outsourced" to dedicated draft
 - Precondition for —bis RFCs to pass GEN-ART and IESG review
 - More documents pending in the queue (active-passive, PDM, ...)
 - Avoid replication: one document can do the update for all.

Status @IETF98

- Adoption as IPPM WG item, July 2016
- Extensive comments from Fred Baker and Marius Georgescu:
- Extension Headers covered in Type-P and Standard Formed packet sections
- Load balancer as an example of Class C (equal treatment)
- Examples where Type-P *changes from Src to Dst.
- IP address family coexistance means more circumstances to discuss (v4 v6 transition).
 - Major new section covers NAT, v4v6, Header Compression

Status @IETF98

- Discussion needed
 - Handling of large packets in IPv6 (including fragment extension headers, PMTUD, PLMTUD),
 - Extent of coverage for 6LO and IPv6 Header Compression, and
 - The continued need to define a "minimal standard-formed packet".
 - IPv6 header treatment in intermediate nodes
- Concluding that, WGLC...

Handling of large packets in IPv6

- Path MTU Discovery (PMTUD)
- Packetization Layer Path MTU Discovery (PLMTUD)
- Adopt RFC2330 IPV4 fragment handling procedure for IPv6 fragments, too
 - Fragments are NOT standard formed
 - Use of non-fragmented packets for measurements only.
 - Scope of IPPM framework metrics excludes fragmented IP(v4) packets.
 - Accepting IPv6 fragments would mean reviewing and updating ALL existing metrics

6lo and IPv6 Header Compression

- If we do not include them explicitly, 6lo and ROHC IPv6 packets are out of scope of the IPPM (like IPv6 is right now).
- 6lo and IPv6 HC rely on state to be stored in gateway nodes (ingress, egress)
 - 6lo and ROHC modify Type-P
 - Distinct MTUs, physical-layer support, encryption,...
 - IPv6 addresses mapped to 6LoWPAN addressing scheme
 - No source, destination IPv6 addresses available
- Conclusion: 6LoWPAN for further study
 - Considered out of scope for this draft
 - No more work

Minimal Standard-Formed Packet

- Definition of minimal standard-formed packet "A particular type of standard-formed packet often useful to consider is the "minimal IP packet from A to B" - this is an IP packet with the following properties:
 - It is standard-formed.
 - Its data payload is 0 octets.
 - It contains no options."
 - "Note that we do not define its protocol field..."
- Who has used this definition?
 - Practical use (router handling of "undefined" protocol?)
 - IANA allocation: "no transport header"?
- Proposal: remove definition of minimal standard-formed packet for IPv4 and IPv6

IPv6 Extension Header Treatment

- IPv6 extension header treatment in intermediate nodes
 - Subject to discussions in v6ops
- Inspection/addition/removal of extension headers useful in the context of IPPM
 - Restricted to closed (enterprise) segments?
 - In-situ OAM (ioam)
- Challenges:
 - Extension header modifications change Type-P
 - Treatment in subsequent nodes (Segment routing?)
- Proposal: allow, point out challenges/drawbacks

Status and Next Steps

- Proposals (solutions) presented for all open topics.
- Asking for WG and list feedback on proposals
- Integrate changes into document.
- Following: draft ready for WGLC.

BACKUP

Recap RFC 2330 Definitions: Type-P

RFC 2330, Sec. 13:

- "A fundamental property of many Internet metrics is that the value of the metric depends on the type of IP packet(s) used to make the measurement..."
- ... "Whenever a metric's value depends on the type of the packets involved in the metric, the metric's name will include either a specific type or a phrase such as "type-P".
- ... "Generic notion of a "packet of Type-P"...
 - Fully defined (port-http-tcp-connectivity-50byte-payload)
 - Partially defined (UDP packet)
 - Generic (Type-P)
- Type-P becomes part of any metric definition
 - Example: Define "IP-Type-P-connectivity" metric instead of "IP- connectivity" metric

RFC 2330 Update: Type-P

- Mention special treatment of packets
 - Diffserv, ECN, Router alert, extension headers, ...
- Identify case when Type-P changes along the path
 - Type and length changes because of IPv4 <-> IPv6 translation, or IPv6 extension headers adding or removal
 - Modified values SHOULD be noted and reported with the results
- Discuss possible impact of NAT along path
 - Unpredictable impact on delay
 - Stateful NAT: state created on first packet: delay penalty
- RFC2330 Note: class C equivalence for path (MAP RG!)
 - ..."it would be very useful to know if a given Internet component treats equally a class C of different types of packets. If so, then any one of those types of packets can be used for subsequent measurement of the component. This suggests we devise a metric or suite of metrics that attempt to determine C."

Recap RFC 2330 Definitions: Std-Formed

RFC 2330, Sec. 14:

- "...all metric definitions ... include an implicit assumption that the packet is *standard formed*"...
- "...a packet is standard formed if it meets all of the following criteria:..."
 - Length (IP header) = sizeof (IP header) + sizeof(payload)
 - Valid IP header: "version field is 4 (later, we will expand this to include 6)" (quote RFC2330!)
 - Header length >= 5, checksum is correct, no IP fragment.
 - Src and dest addr. correspond to the hosts in question.
 - TTL sufficiently large or 255
 - No IP options unless explicitly noted.
 - If transport header is present: valid checksum and fields.
 - Length B: 0 <= B <= 65535 ...

RFC 2330 Update: Std-Formed Packet

- IPv4 and IPv6 allowed
- Basic requirements (aggregated IPv4 and IPv6):
 - Valid IP header
 - Not an IP fragment.
 - Source and Destination addresses intended.
 - Transport header: valid checksum and valid fields
- Separate discussion of IPv4 and IPv6
 - IPv4 unchanged
- IPv6
 - Version field 6, total length including extension headers
 - Extension headers: none or correct types and correct order, extension header parameters conforming with IANA
 - Note controversies (RFCs 6564 and 7045): intermediate nodes inspect/add/delete/change IPv6 extension headers

Next Steps

- Urgent need to update IPPM for IPv6
 - RFCs and documents in queue depend on it!
 - Draft scope and structure is stable
 - Feedback and Input requested

Call for adoption as IPPM WG item.

Contact (all draft authors):

mailto:draft-ietf-ippm-2330-stdform-typep@ietf.org