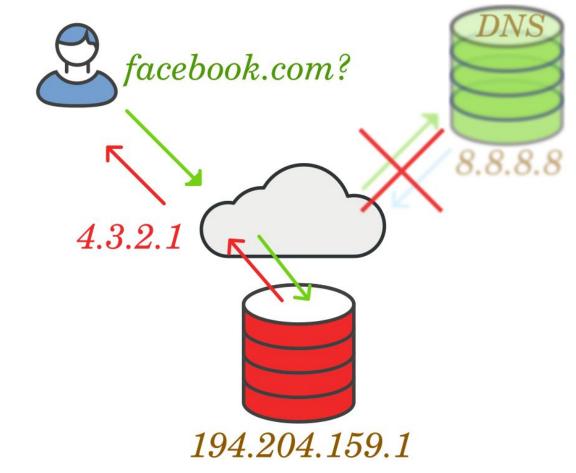


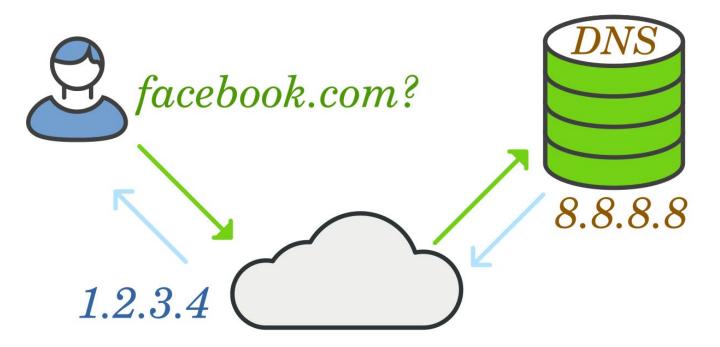
Fingerprint-based detection of DNS hijacks using RIPE Atlas

MAPRG Meeting, IETF 99 20th July 2017, Prague


20^m July 2017, Pragu

Paweł Foremski

Farsight Security, Inc. IITiS PAN Maciej Andziński NASK



DNS hijacks?

DNS hijack: you *think* Google answers your queries

No hijacking: Google really answers your queries

RIPE Atlas?

An Internet measurement platform, ~10,000 probes

Research idea & goals

- 1. Send several DNS queries to 8.8.8.8 (*)
- 2. Rewrite DNS replies as feature vectors
- 3. Check if the fingerprints match the model

-> RIPE Atlas -> fingerprinting -> detection

- Determine feasible fingerprint features
- Target Google Public DNS & Cisco OpenDNS
- How prevalent hijacking is globally, per-country, per-AS?
- Who are the systematic hijackers?
- What does it all mean to the Internet?

Agenda

- **1. Features of recursive servers**
- 2. Measurements & tools
- 3. Establishing ground-truth
- 4. Classification using ML
- 5. Results
- 6. Conclusions

Features

1. RIPE Atlas provides a <u>restricted API for DNS queries</u>

- a. Allows specifying the target server & some query parameters
- b. Provides low-level access to DNS replies (wire format)
- c. Measures timing

2. CHAOS TXT queries

- a. e.g. <u>RFC4892</u>, Requirements for a Mechanism Identifying a Name Server Instance
- b. **CH TXT hostname.bind** -> e.g. "cdns011.ovh.net" or... "who know"
- c. CH TXT version.bind -> e.g. "dnsmasq-2.76" or... "[SECURED]"
- d. CH TXT id.server -> e.g. "unbound.t72.ru" or... "go away"
- e. For each reply, store:
 - i. response time & size
 - ii. DNS header flags & rcode
 - iii. rdata of first answer

Features #2

3. DNSSEC support

- a. see e.g. <u>RFC4033</u> <u>RFC4035</u>
- b. IN A dnssec-failed.org -> should fail
- c. IN DNSKEY pl. -> must not fail

4. IPv6 support

- a. Query for a zone hosted on an IPv6-only auth NS
- b. IN AAAA ds.v6ns.test-ipv6.ams.vr.org -> should not fail
 - i. v6ns.test-ipv6.ams.vr.org. 1800 IN NS v6ns1.test-ipv6.ams.vr.org.
 - ii. v6ns1.test-ipv6.ams.vr.org. 1670 IN AAAA2607:f740:d::f77

5. TCP support

- a. Force RIPE Atlas to do query over TCP
- b. IN A facebook.com / TCP -> should not fail

Features #3

6. Replies to non-existent domains

- a. IN A <timestamp>.<probe-id>.surely1does2not3exist4.com
- b. Each RIPE Atlas probe prepends its own unique label
- c. Should return rcode 3, NXDOMAIN
- d. If the query is successful (rcode 0), store:
 - i. The IP address returned
 - ii. AS number & network name

7. Qname letter case (in-)sensitivity

- a. IN A FaCeBoOk.cOm
- b. Should return the same letter case
- c. If the rname in the answer doesn't match, mark as failure

Features #4

8. Round-trip time

a. Measure the minimum ICMP ping RTT to the resolver

9. Traceroute

- a. Send an ICMP traceroute to the resolver
- b. Filter out private IP addr space
- c. Store: hop count, ASPATH length, parameters of the exit AS (RTT, ASN, network)

10. Two independent "who am I?" services:

- a. IN A whoami.akamai.com
- b. IN TXT test.ipv4.google-pdns-info.andzinski.pl
- c. An auth server that replies with the <u>resolver</u> IP address
- d. Store: returned IP address, it's ASN and network name

Measurements & tools

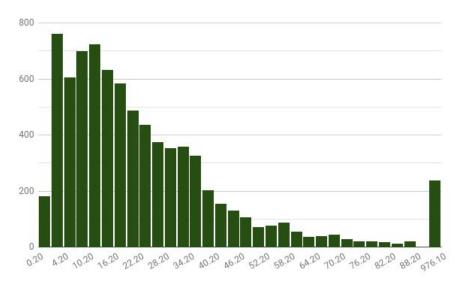
• Run in June 2017 using 9,790 RIPE Atlas probes (3K ASes)

- ...burned a few million RIPE Atlas credits thanks Vesna & Stephen! ;-)
- tools published at <u>https://github.com/recdnsfp/measurements</u>
- parsers at <u>https://github.com/recdnsfp/parsejson</u>

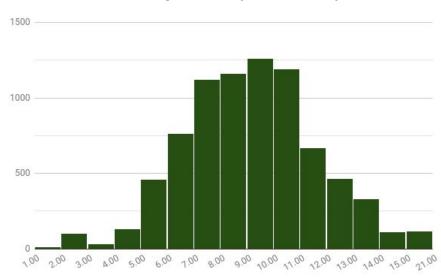
• Google (8.8.8.8)

- Raw: <u>https://github.com/recdnsfp/measurements/tree/master/datasets/google</u>
- Spreadsheet: <u>https://goo.gl/LSXSjW</u>

• OpenDNS (208.67.222.222)


- <u>https://github.com/recdnsfp/measurements/tree/master/datasets/opendns</u>
- Spreadsheet: <u>https://goo.gl/9MEhnx</u>

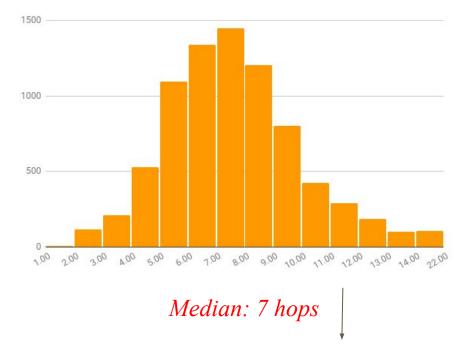
• Bonus: default probe resolvers


- <u>https://github.com/recdnsfp/measurements/tree/master/datasets/probes</u>
- Spreadsheet: <u>https://goo.gl/GCZ4Xu</u>

Measurements: Google Public DNS

Latency (ICMP ping)

Median: 17.8 msec


Hop count (traceroute)

Median: 9 hops

Measurements: Cisco OpenDNS

Latency (ICMP ping)

Median: 22.6 msec

Hop count (traceroute)

Measurements: probe resolvers

Resolver network, as seen by whoami.akamai.com

#	Network	Count	Percentage
1	GOOGLE	1,857	21.63%
2	OPENDNS	351	4.09%
	+ DIRECT_MEDIA	31	0.36%
3	LIBERTY_GLOBAL_OPERATIONS	234	2.73%
4	DEUTSCHE_TELEKOM	222	2.59%
5	COMCAST_CABLE_COMMUNICATIONS	212	2.47%
6	ORANGE	147	1.71%
7	FREE_SAS	115	1.34%
8	XS4ALL_INTERNET_BV	65	0.76%
9	BRITISH_TELECOMMUNICATIONS_PLC	65	0.76%
10	MCI_COMMUNICATIONS	61	0.71%
	Other / N/A:	5,224	60.86%

Ground-truth

- No way to obtain from network operators
- Assume the most common fingerprint as "legitimate"
- Assume any deviations in the following as "hijacked":

pected network
JCCESS
K
JCCESS
CCESS
CCESS
CCESS
)

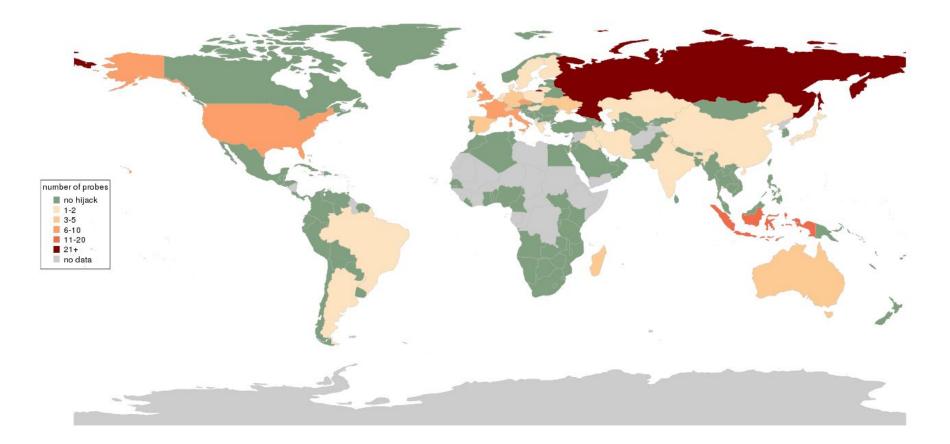
- Hope that ML will pick up all features (40+) & learn how to use them
- Working on an improved, statistics-based ground-truth method

Classification using ML

1. Randomly sample 50 "legitimate" vs. 50 "hijacked" probes

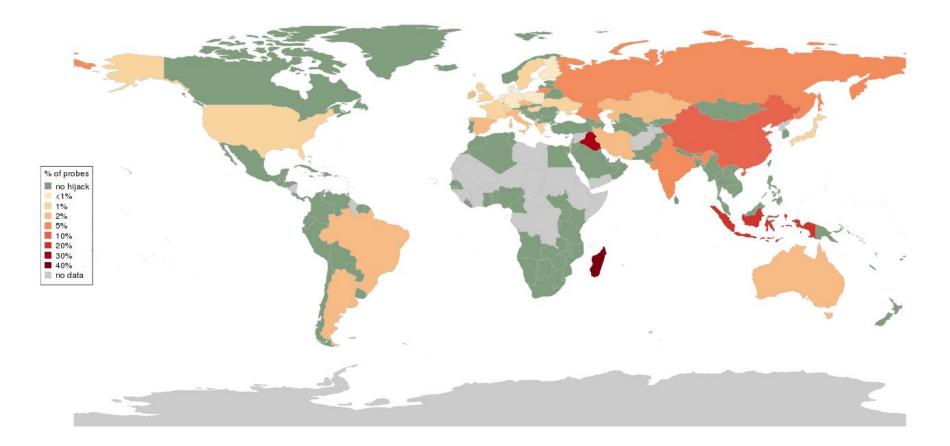
- a. Evenly split into training and testing subsets -> evaluate
- b. Build the target classifier using full training + testing

2. Evaluate the classification performance:

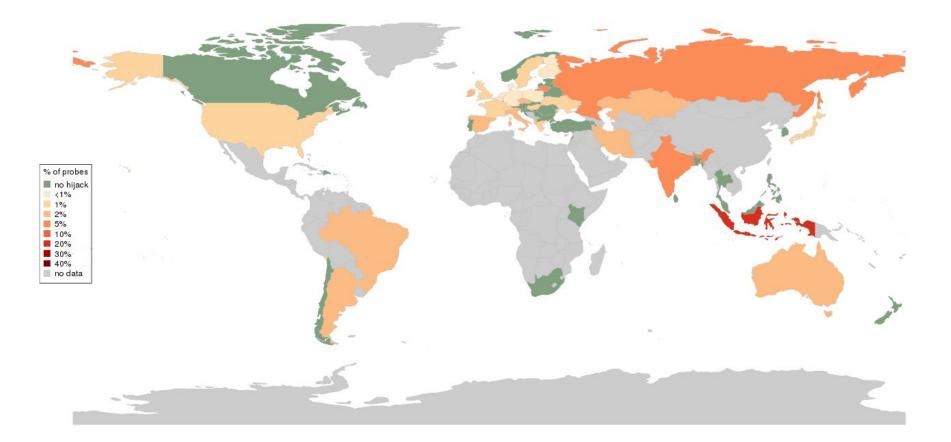

	Google (x 30)			OpenDNS (x 30)			
	Accuracy	%FP	%FN	Accuracy	%FP	%FN	
k-NN (n = 3)	78.11%	6.29%	15.60%	81.44%	0.60%	17.97%	
Decision Tree (CART)	92.82%	0.97%	6.22%	93.56%	1.14%	5.30%	
Random Forest (n = 10)	93.84%	0.00%	6.16%	93.50%	0.25%	6.25%	

3. Classify the rest of data using Random Forest classifier

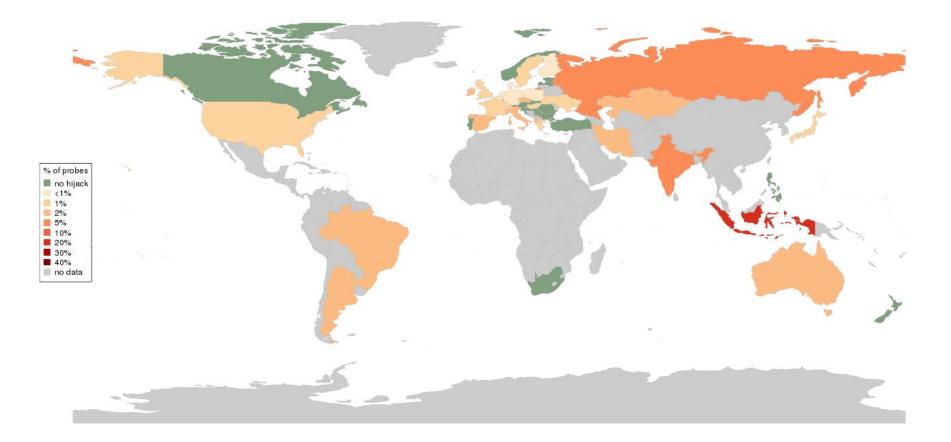
a. Implementation at <u>https://github.com/recdnsfp/classify</u>


Results: Google DNS hijacks (120 = 1.54% globally)

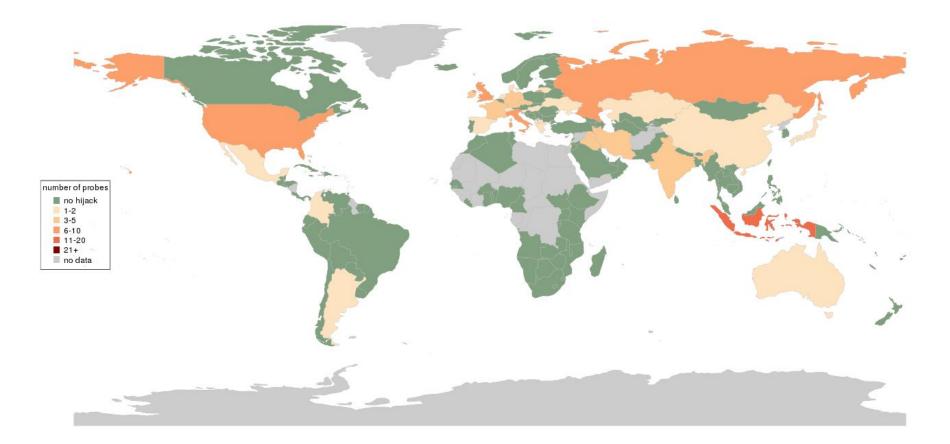
Number of identified hijack cases (Google public DNS)


Results: Google DNS hijacks (%)

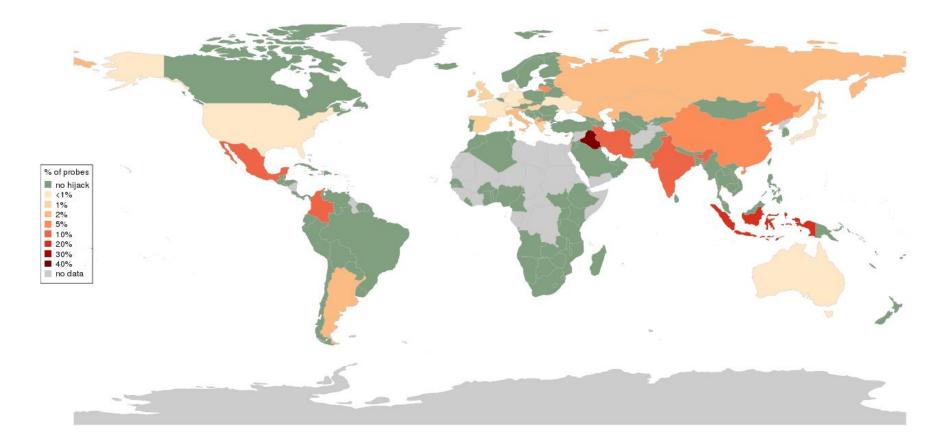
Intensity of identified hijack cases (Google public DNS)


Results: Google DNS hijacks (% for >10 probes)

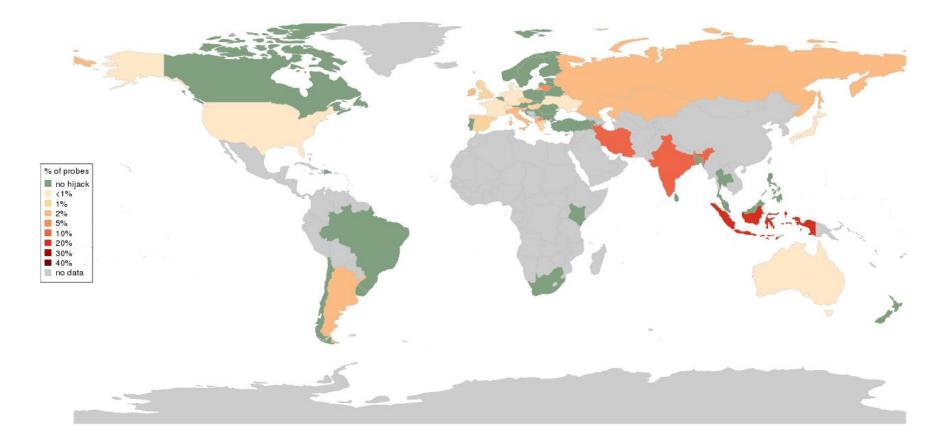
Intensity of identified hijack cases (Google public DNS) - only countries with more than 10 probes


Results: Google DNS hijacks (% for >20 probes)

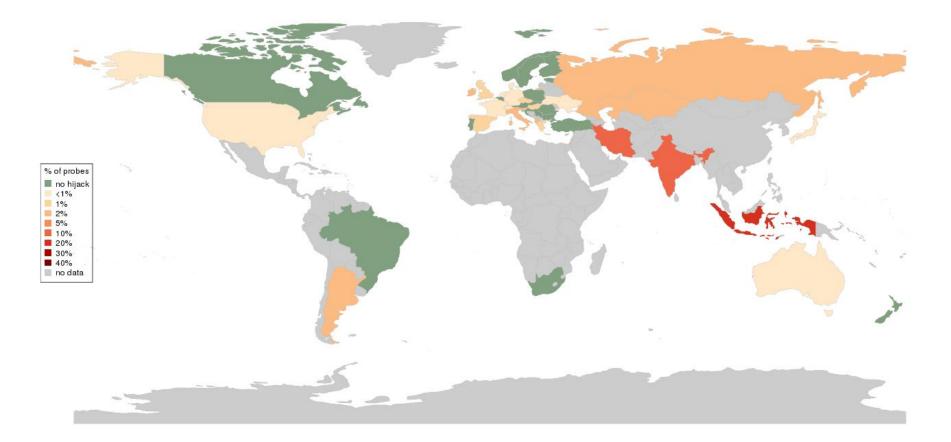
Intensity of identified hijack cases (Google public DNS) - only countries with more than 20 probes


Results: OpenDNS hijacks (94 = 1.22% globally)

Number of identified hijack cases (OpenDNS)


Results: OpenDNS hijacks (%)

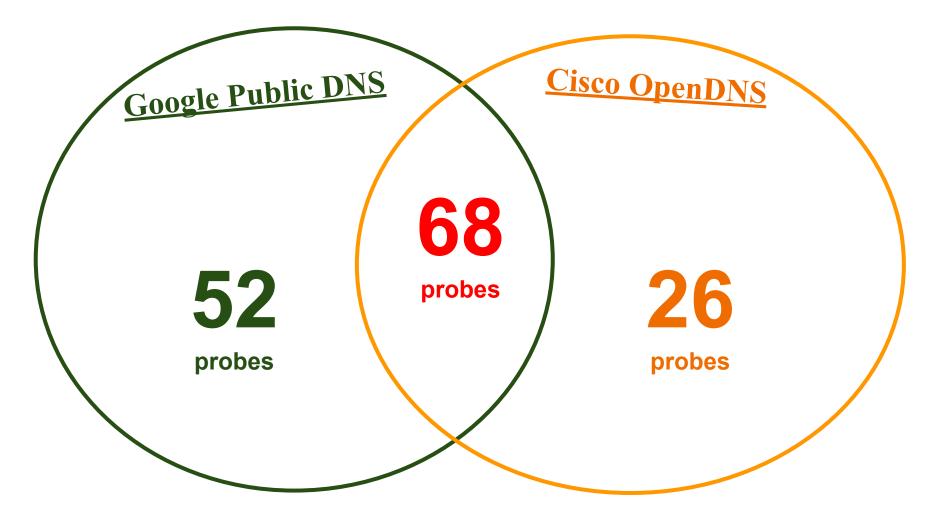
Intensity of identified hijack cases (OpenDNS)


Results: OpenDNS hijacks (% for >10 probes)

Intensity of identified hijack cases (OpenDNS) - only countries with more than 10 probes

Results: OpenDNS hijacks (% for >20 probes)

Intensity of identified hijack cases (OpenDNS) - only countries with more than 20 probes


Results: Google hijacks per ASN

#	Network	ASN	Count	% Total	% for ASN
1	BRITISH_TELECOMMUNICATIONS_PLC	AS2856	6	5.00%	8.96%
2	VODAFONE_ITALIA_SPA	AS30722	5	4.17%	62.50%
3	COMCAST_CABLE_COMMUNICATIONS_LLC	AS7922	4	3.33%	1.35%
4	LIBERTY_GLOBAL_OPERATIONS_BV	AS6830	4	3.33%	1.63%
5	UNARTEL_SRO	AS198977	4	3.33%	80.00%
6	PT_TELEKOMUNIKASI_INDONESIA	AS17974	4	3.33%	80.00%
7	CLOSED_JOINT_STOCK_COMPANY_TRANSTELECOM	AS47313	2	1.67%	100.00%
8	IRENALA	AS37608	2	1.67%	100.00%
9	ABSOLIGHT	AS29608	2	1.67%	100.00%
10	BREDBAND2_AB	AS29518	2	1.67%	40.00%
	Other		85	70.83%	

Results: OpenDNS hijacks per ASN

#	Network	ASN	Count	% Total	% for ASN
1	BRITISH_TELECOMMUNICATIONS_PLC	AS2856	6	6.38%	9.52%
2	VODAFONE_ITALIA_SPA	AS30722	5	5.32%	62.50%
3	PT_TELEKOMUNIKASI_INDONESIA	AS17974	4	4.26%	80.00%
4	COMCAST_CABLE_COMMUNICATIONS_LLC	AS7922	3	3.19%	1.02%
5	LIBERTY_GLOBAL_OPERATIONS_BV	AS6830	2	2.13%	0.82%
6	TELECOMMUNICATION_INFRASTRUCTURE_COMPANY	AS48159	2	2.13%	100.00%
7	SKYLOGIC_SPA	AS29286	2	2.13%	100.00%
8	FREE_SAS	AS12322	2	2.13%	1.36%
9	JASA_TERPADU_TELEMATIKA_JASATEL	AS9785	1	1.06%	100.00%
10	TOKYO_INSTITUTE_OF_TECHNOLOGY	AS9367	1	1.06%	100.00%
	Other		66	70.21%	

Results: who are the systematic hijackers?

Results: who are the systematic hijackers?

- 1. Analyze the probes with both Google & OpenDNS hijacked
- 2. Drop incidental observations with less than 3 probes hijacked

Results:

- 1. AS 17974, Telkom Indonesia: 4 out of 6 (66.7%)
- 2. AS 30722, Vodafone Italy: 5 out of 9 (55.6%)
- 3. AS 2856, British Telecommunications: 5 out of 88 (7.4%)

Conclusions

• DNS hijacking is a real thing happening on the Internet

- We found ~100 RIPE Atlas probes with hijacked DNS for the two biggest providers
- Some regions have >25% chances of DNS being hijacked
- Globally, there's >1% probability on average

• The risk does not necessarily come from a state actor

- We found Autonomous Systems that seem to have a policy of DNS hijacking
- Many hijacks in developed countries (e.g. US, UK, Italy)
- Probably many motivations...

• No big difference for Google DNS vs. OpenDNS

• Just switching the resolver IP will not help

• The Internet absolutely needs a more secure DNS

- Hijacking opens endless possibilities for manipulation & surveillance
- We need to secure the stub vs. recursive resolver path

Thank You!

Paweł Foremski

pjf@fsi.io @pforemski

Maciej Andziński maciej.andzinski@nask.pl

@MaciejAndzinski

https://github.com/recdnsfp

Acknowledgements & Thanks:

- Mateusz Kaczanowski (Facebook)
- Vesna Manojlovic (RIPE NCC)
- Stephen D. Strowes (RIPE NCC)