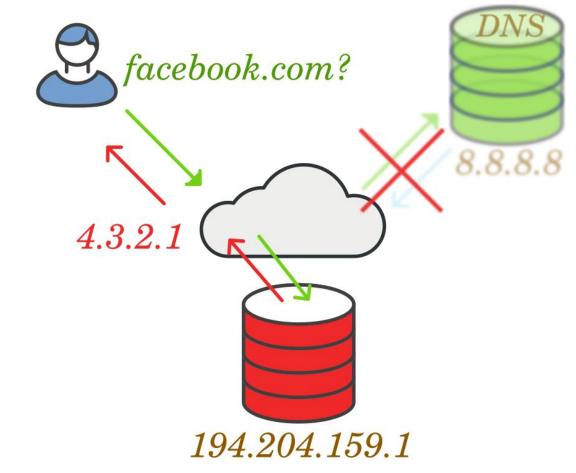


Fingerprint-based detection of DNS hijacks using RIPE Atlas

MAPRG Meeting, IETF 99 20th July 2017, Prague


20^{ar} July 2017, Pragu

Paweł Foremski

Farsight Security, Inc. IITiS PAN Maciej Andziński NASK

DNS hijacks?

DNS hijack: you *think* Google answers your queries

RIPE Atlas?

An Internet measurement platform, ~10,000 probes

Research idea & goals

- 1. Send select DNS queries to the target IP
- 2. Rewrite replies as a feature vector
- 3. Check if the fingerprint matches the model

-> RIPE Atlas -> fingerprinting -> detection

- Target: Google DNS & OpenDNS (*)
- How prevalent hijacking is globally, per-country, per-AS?
- Which are the most risky ASes?
- What does it all mean to the Internet?

Features

1. RIPE Atlas provides a <u>restricted API for DNS queries</u>

- a. Allows specifying the target server & some query parameters
- b. Provides low-level access to DNS replies (wire format)
- c. Measures timing

2. CHAOS TXT queries

- a. CH TXT hostname.bind -> e.g. "cdns011.ovh.net" or... "who know"
- b. CH TXT version.bind -> e.g. "dnsmasq-2.76" or... "[SECURED]"
- c. CH TXT id.server -> e.g. "unbound.t72.ru" or... "go away" (RFC 4892)
- d. For each reply, store:
 - i. response time & size
 - ii. DNS header flags & rcode
 - iii. rdata of first answer

Features #2

3. DNSSEC support (<u>RFC4033</u> - <u>RFC4035</u>)

- a. IN A dnssec-failed.org -> should fail
- b. IN DNSKEY pl. -> must not fail

4. IPv6 support

- a. Query for a zone hosted on an IPv6-only auth NS
- b. IN AAAA ds.v6ns.test-ipv6.ams.vr.org -> should not fail

5. TCP support

a. IN A facebook.com / TCP -> should not fail

6. Replies to non-existent domains

- a. IN A <timestamp>.<probe-id>.surely1does2not3exist4.com
- b. If successful, store IP, ASN, network name

7. Qname letter case (in-)sensitivity

- a. IN A FaCeBoOk.cOm
- b. Should return the same letter case

Features #3

8. Round-trip time

a. Measure the minimum ICMP ping RTT to the resolver

9. Traceroute

- a. Send an ICMP traceroute to the resolver
- b. Filter out private IP addr space
- c. Store: hop count, ASPATH length, parameters of the exit AS (RTT, ASN, network)

10. Two independent "who am I?" services:

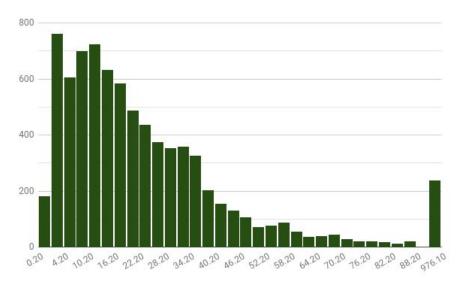
- a. IN A whoami.akamai.com
- b. IN TXT test.ipv4.google-pdns-info.andzinski.pl
- c. An auth server that replies with the <u>resolver</u> IP address
- d. Store: returned IP address, it's ASN and network name

Measurements & tools

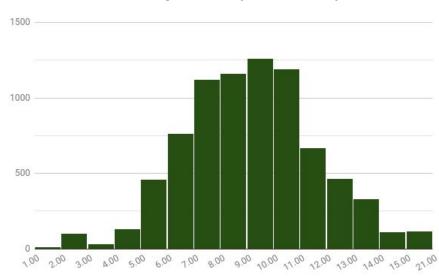
• Run in June 2017 using 9,790 RIPE Atlas probes (3K ASes)

- ...burned a few million RIPE Atlas credits thanks Vesna & Stephen! ;-)
- tools published at <u>https://github.com/recdnsfp/measurements</u>
- parsers at <u>https://github.com/recdnsfp/parsejson</u>

• Google (8.8.8.8)


- Raw: <u>https://github.com/recdnsfp/measurements/tree/master/datasets/google</u>
- Spreadsheet: <u>https://goo.gl/LSXSjW</u>

• OpenDNS (208.67.222.222)


- <u>https://github.com/recdnsfp/measurements/tree/master/datasets/opendns</u>
- Spreadsheet: <u>https://goo.gl/9MEhnx</u>

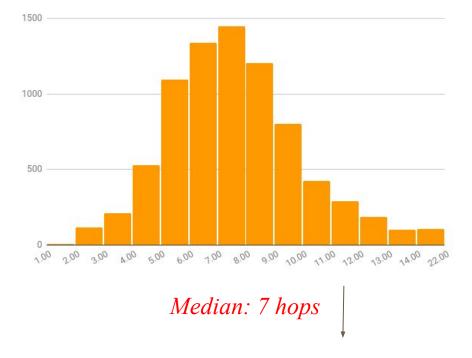
Measurements: Google Public DNS

Latency (ICMP ping)

Median: 17.8 msec

Hop count (traceroute)

Median: 9 hops


Measurements: Cisco OpenDNS

Latency (ICMP ping) 800 200

600

400

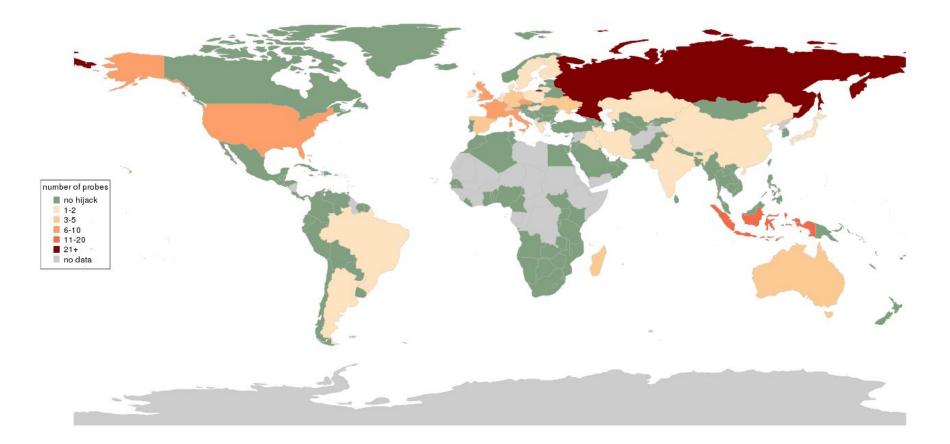
Median: 22.6 msec

Hop count (traceroute)

Ground-truth

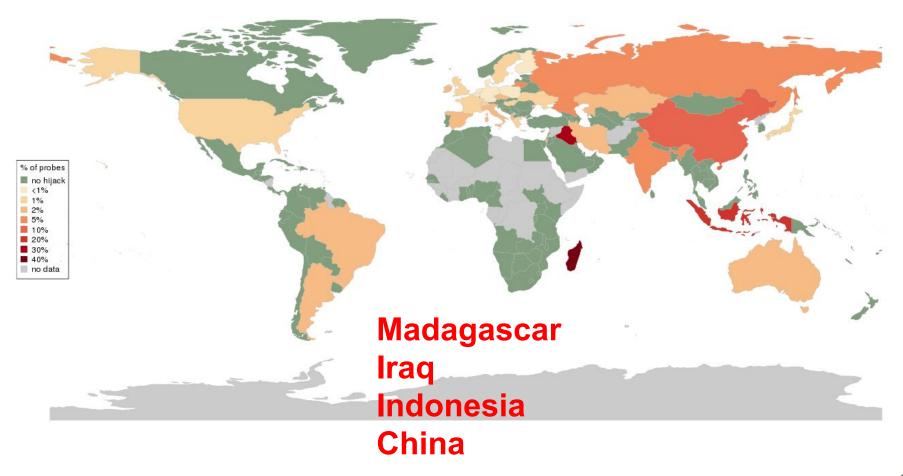
- No way to obtain from network operators
- Assume the most common fingerprint as "legitimate"
- Assume some deviations in the fingerprint as "hijacked" (7 features)
- ML classifier will use all of the features (40+)

Machine Learning Classification

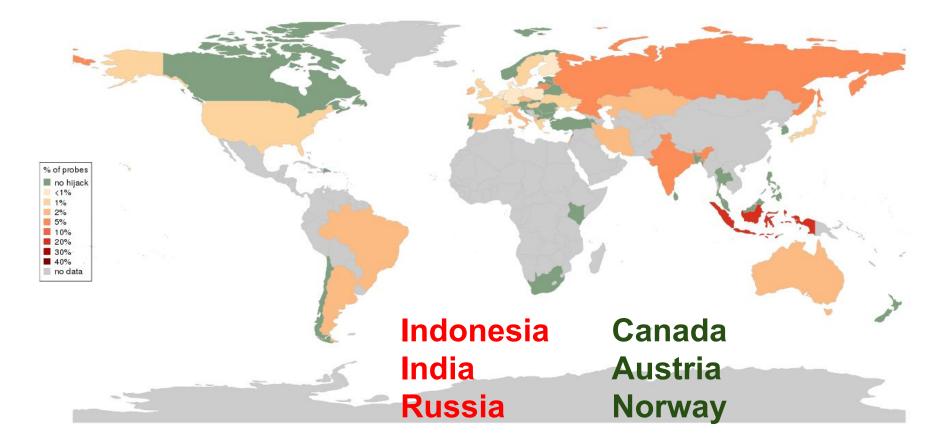

- 1. Randomly sample 50 "legitimate" vs. 50 "hijacked" probes
 - a. Randomly split into training/testing 30 times -> evaluate
- 2. Evaluate the classification performance:

	Google			OpenDNS			
	Accuracy	%FP	%FN	Accuracy	%FP	%FN	
k-NN (n = 3)	78.11%	6.29%	15.60%	81.44%	0.60%	17.97%	
Decision Tree (CART)	92.82%	0.97%	6.22%	93.56%	1.14%	5.30%	
Random Forest (n = 10)	93.84%	0.00%	6.16%	93.50%	0.25%	6.25%	

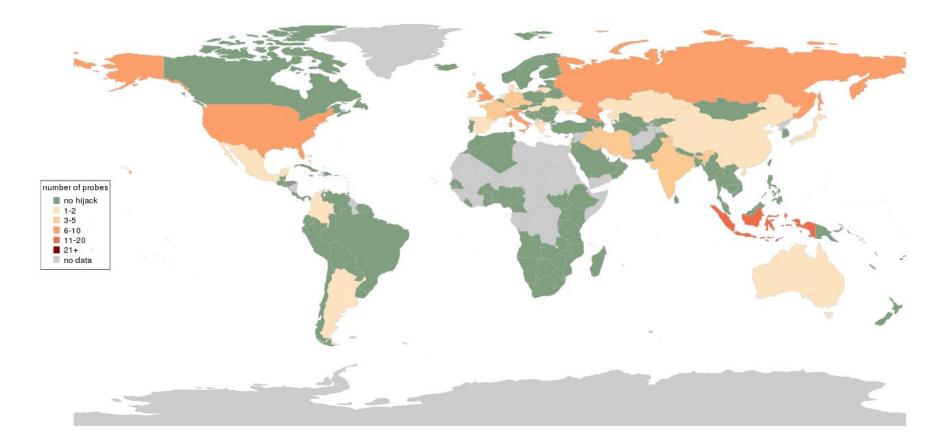
- 3. Classify the rest of data using Random Forest classifier
 - a. Implementation at <u>https://github.com/recdnsfp/classify</u>


Results: Google DNS hijacks (120 = 1.54% globally)

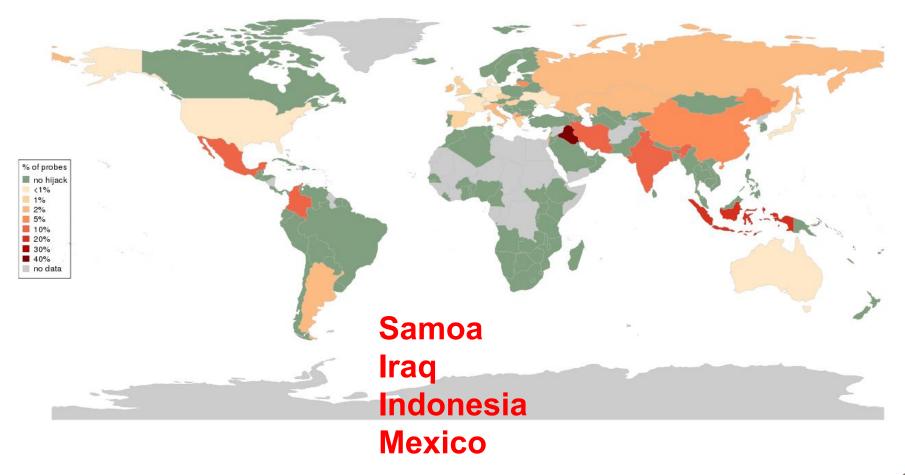
Number of identified hijack cases (Google public DNS)


Results: Google DNS hijacks (%)

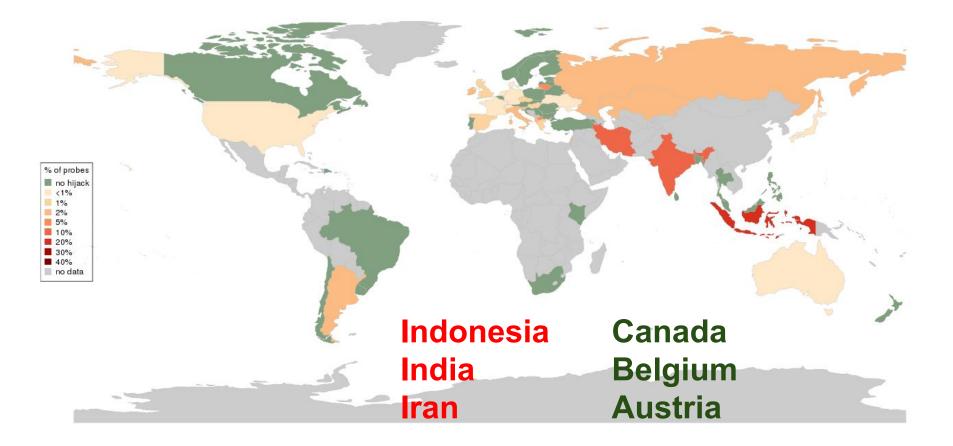
Intensity of identified hijack cases (Google public DNS)


Results: Google DNS hijacks (% for >10 probes)

Intensity of identified hijack cases (Google public DNS) - only countries with more than 10 probes


Results: OpenDNS hijacks (94 = 1.22% globally)

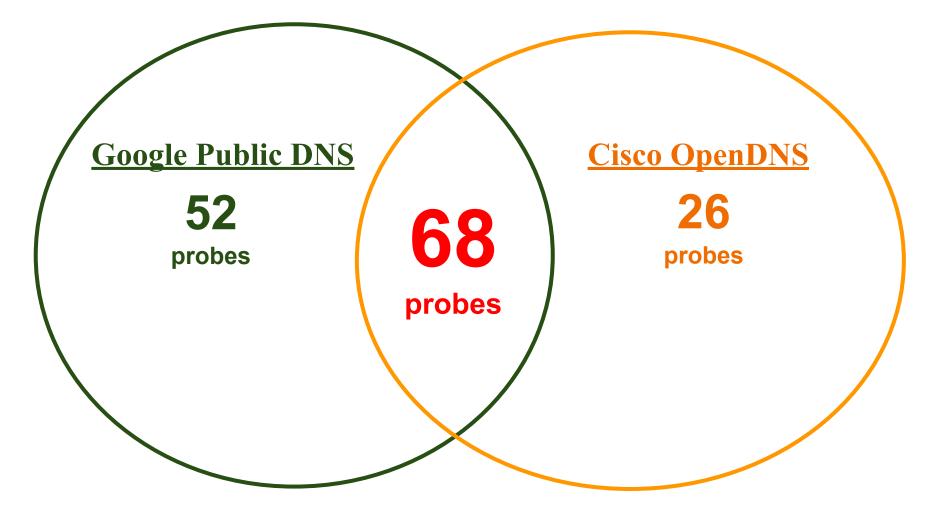
Number of identified hijack cases (OpenDNS)


Results: OpenDNS hijacks (%)

Intensity of identified hijack cases (OpenDNS)

Results: OpenDNS hijacks (% for >10 probes)

Intensity of identified hijack cases (OpenDNS) - only countries with more than 10 probes


Results: Google hijacks per AS

#	Network	ASN	Count	% Total	% in ASN
1	BRITISH_TELECOMMUNICATIONS_PLC	AS2856	6	5.00%	8.96%
2	VODAFONE_ITALIA_SPA	AS30722	5	4.17%	62.50%
3	COMCAST_CABLE_COMMUNICATIONS_LLC	AS7922	4	3.33%	1.35%
4	LIBERTY_GLOBAL_OPERATIONS_BV	AS6830	4	3.33%	1.63%
5	UNARTEL_SRO	AS198977	4	3.33%	80.00%
6	PT_TELEKOMUNIKASI_INDONESIA	AS17974	4	3.33%	80.00%
7	CLOSED_JOINT_STOCK_COMPANY_TRANSTELECOM	AS47313	2	1.67%	100.00%
8	IRENALA	AS37608	2	1.67%	100.00%
9	ABSOLIGHT	AS29608	2	1.67%	100.00%
10	BREDBAND2_AB	AS29518	2	1.67%	40.00%
	Other		85	70.83%	

Results: OpenDNS hijacks per AS

#	Network	ASN	Count	% Total	% in AS
1	BRITISH_TELECOMMUNICATIONS_PLC	AS2856	6	6.38%	9.52%
2	VODAFONE_ITALIA_SPA	AS30722	5	5.32%	62.50%
3	PT_TELEKOMUNIKASI_INDONESIA	AS17974	4	4.26%	80.00%
4	COMCAST_CABLE_COMMUNICATIONS_LLC	AS7922	3	3.19%	1.02%
5	LIBERTY_GLOBAL_OPERATIONS_BV	AS6830	2	2.13%	0.82%
6	TELECOMMUNICATION_INFRASTRUCTURE_COMPANY	AS48159	2	2.13%	100.00%
7	SKYLOGIC_SPA	AS29286	2	2.13%	100.00%
8	FREE_SAS	AS12322	2	2.13%	1.36%
9	JASA_TERPADU_TELEMATIKA_JASATEL	AS9785	1	1.06%	100.00%
10	TOKYO_INSTITUTE_OF_TECHNOLOGY	AS9367	1	1.06%	100.00%
	Other		66	70.21%	

Results: Google vs OpenDNS

Results: the most risky ASes

- 1. Take probes with both Google & OpenDNS hijacked
- 2. Drop ASes with less than 3 probes with hijacked DNS

Results:

- 1. AS 17974, Telkom Indonesia: 4 out of 6
- 2. AS 30722, Vodafone Italy: 5 out of 9
- 3. AS 2856, British Telecommunications: 5 out of 88

Conclusions

• DNS hijacking is a real thing happening on the Internet

- We found several RIPE Atlas probes with hijacked DNS resolver
- Some countries have >25% chances of DNS being hijacked

• The risk does not necessarily come from a government

- Some ASes seem to have a policy of DNS hijacking
- Many hijacks in developed countries
- Probably many motivations not only "censorship"

• No big difference for Google DNS vs. OpenDNS

• Just switching the resolver IP will not help

• The Internet absolutely needs more secure DNS

- Hijacking opens endless possibilities for manipulation & surveillance
- We need to secure the stub vs. recursive resolver path

(120/94)

(>1% avg)

(e.g. US, UK, Italy)

Future Work

- IPv6
- Better ground-truth method
- Analyze data returned by hijacked resolvers
- Publish a paper :)

Thank You!

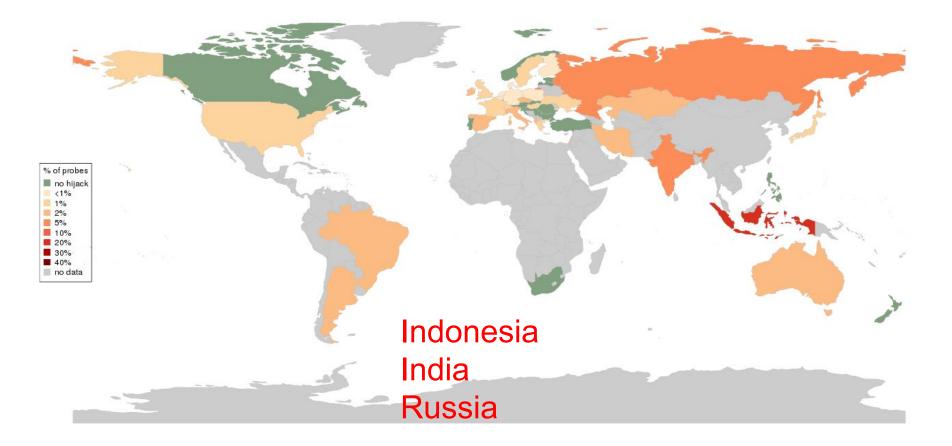
Paweł Foremski

Maciej Andziński maciej.andzinski@nask.pl @MaciejAndzinski

https://github.com/recdnsfp

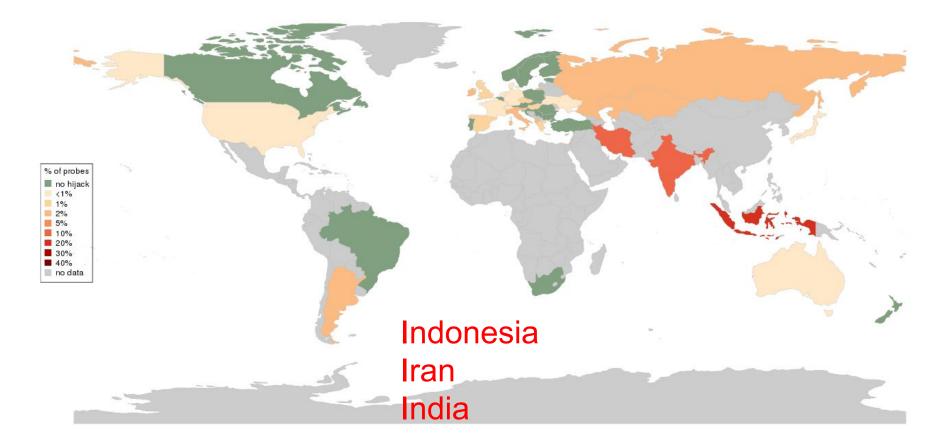
Acknowledgements & Thanks:

- Mateusz Kaczanowski (Facebook)
- Vesna Manojlovic (RIPE NCC)
- Stephen D. Strowes (RIPE NCC)
- RIPE NCC DNS Hackathon (2017)


Backup slides

recdnsfp vs. fpdns

- Uses all RIPE Atlas probes vs. a single machine
- Uses Machine Learning vs. static rules
- Targets recursive DNS servers only
- Different purpose: detect hijacks vs. server software version


Results: Google DNS hijacks (% for >20 probes)

Intensity of identified hijack cases (Google public DNS) - only countries with more than 20 probes

Results: OpenDNS hijacks (% for >20 probes)

Intensity of identified hijack cases (OpenDNS) - only countries with more than 20 probes

Measurements: default probe resolvers

Resolver network, as seen by whoami.akamai.com

#	Network	Count	Percentage
1	GOOGLE	1,857	21.63%
2	OPENDNS	351	4.09%
	+ DIRECT_MEDIA	31	0.36%
3	LIBERTY_GLOBAL_OPERATIONS	234	2.73%
4	DEUTSCHE_TELEKOM	222	2.59%
5	COMCAST_CABLE_COMMUNICATIONS	212	2.47%
6	ORANGE	147	1.71%
7	FREE_SAS	115	1.34%
8	XS4ALL_INTERNET_BV	65	0.76%
9	BRITISH_TELECOMMUNICATIONS_PLC	65	0.76%
10	MCI_COMMUNICATIONS	61	0.71%
	Other / N/A:	5,224	60.86%