
1

To appear in ACM SIGCOMM, August 2017

Protocol for HTTP transport, deployed at Google starting 2014
Between Google services and Chrome / mobile apps
Reduced page-load latency and video rebuffers

YouTube Video Rebuffers: 15 - 18%
Google Search Latency: 3.6 - 8%

35% of Google's traffic (7% of Internet)

IETF QUIC working group formed in Oct 2016
Modularize and standardize QUIC

A QUIC history

2

3

Google's QUIC deployment

What are we talking about?

TLS

HTTP/2

TCP

IP

QUIC

UDP

HTTP over QUIC

4

● Deployability and evolvability
● Low latency connection establishment

○ mostly 0-RTT, sometimes 1-RTT
● Multistreaming and per-stream flow control
● Better loss recovery and flexible congestion control

○ Richer signaling (unique packet number)
○ Better RTT estimates

● Resilience to NAT-rebinding

QUIC Design Aspirations

5

● Latency
○ Search
○ Video Playback

● Video Rebuffer Rate

● Application-defined metrics
○ Matter to apps, drive adoption
○ Include non-network components

Metrics

6

7

Search and Video Latency

8

Search and Video Latency

9

Search and Video Latency

10

Handshake Latency

11

Video Rebuffer Rate

12

All metrics improve more
as RTT increases ...

13

Network loss rate increases with RTT

14

TCP receive window limit

4.6% of connections have
server's max cwnd == client's max rwnd

15

QUIC improvement by country

● QUIC successfully used: 95.3% of clients
● Blocked (or packet size too large): 4.4%
● QUIC performs poorly: 0.3%

○ Networks that rate limit UDP
○ Manually turn QUIC off for such ASes

Experiments and Experiences:
UDP Blockage

16

● UDP packet train experiment, send and echo packets
● Measure reachability from Chrome users to Google servers

Experiments and Experiences:
Packet Size Considerations

17

Experiments and Experiences:
FEC in QUIC

18

● Simple XOR-based FEC in QUIC
○ 1 FEC packet per protected group
○ Timing of FEC packet and size of group controllable

● Conclusion: Benefits not worth the pain
○ Multiple packet losses within RTT common
○ FEC implementation extremely invasive
○ Gains really at tail, where aggressive TLP wins

● Better practices and tools than kernel
● Better integration with tracing and logging infrastructure

Experiments and Experiences:
Userspace development

19

● Middlebox ossification
○ Vendor ossified first byte of QUIC packets (flags byte)
○ … since it seemed to be the same on all QUIC packets
○ Broke QUIC deployment when a flag was flipped

Encryption is the only protection against network ossification

● Userspace development
○ Has better practices and tools than kernel
○ Better integration with tracing and logging infrastructure

Experiments and Experiences:
Network Ossification

20

