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Protocol for HTTP transport, deployed at Google starting 2014
Between Google services and Chrome / mobile apps
Reduced page-load latency and video rebuffers

YouTube Video Rebuffers:  15 - 18%
Google Search Latency:  3.6 - 8%

35% of Google's traffic (7% of Internet)

IETF QUIC working group formed in Oct 2016
Modularize and standardize QUIC

A QUIC history
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Google's QUIC deployment



What are we talking about?

TLS

HTTP/2

TCP

IP

QUIC

UDP

HTTP over QUIC
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● Deployability and evolvability
● Low latency connection establishment

○ mostly 0-RTT, sometimes 1-RTT
● Multistreaming and per-stream flow control
● Better loss recovery and flexible congestion control

○ Richer signaling (unique packet number)
○ Better RTT estimates

● Resilience to NAT-rebinding

QUIC Design Aspirations
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● Latency
○ Search
○ Video Playback

● Video Rebuffer Rate

● Application-defined metrics
○ Matter to apps, drive adoption
○ Include non-network components

Metrics
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Search and Video Latency
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Search and Video Latency
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Search and Video Latency
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Handshake Latency
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Video Rebuffer Rate
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All metrics improve more 
as RTT increases ...
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Network loss rate increases with RTT
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TCP receive window limit

4.6% of connections have 
server's max cwnd == client's max rwnd
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QUIC improvement by country



● QUIC successfully used: 95.3% of clients
● Blocked (or packet size too large): 4.4%
● QUIC performs poorly: 0.3%

○ Networks that rate limit UDP
○ Manually turn QUIC off for such ASes

Experiments and Experiences:
UDP Blockage
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● UDP packet train experiment, send and echo packets
● Measure reachability from Chrome users to Google servers

Experiments and Experiences:
Packet Size Considerations
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Experiments and Experiences:
FEC in QUIC
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● Simple XOR-based FEC in QUIC
○ 1 FEC packet per protected group
○ Timing of FEC packet and size of group controllable

● Conclusion: Benefits not worth the pain
○ Multiple packet losses within RTT common
○ FEC implementation extremely invasive
○ Gains really at tail, where aggressive TLP wins



● Better practices and tools than kernel
● Better integration with tracing and logging infrastructure

Experiments and Experiences:
Userspace development
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● Middlebox ossification
○ Vendor ossified first byte of QUIC packets (flags byte)
○ … since it seemed to be the same on all QUIC packets
○ Broke QUIC deployment when a flag was flipped

Encryption is the only protection against network ossification

● Userspace development
○ Has better practices and tools than kernel
○ Better integration with tracing and logging infrastructure

Experiments and Experiences:
Network Ossification
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