

Using Flexibility as a Measure to Evaluate Softwarized Networks

Wolfgang Kellerer

Technical University of Munich

Prague, July 17, 2017

IETF 99 Prague, Czech Republic

July 16-21, 2017

IRTF NFVRG

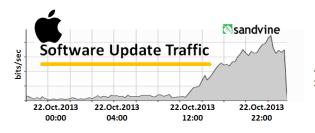
Introduction

- Networking today: new requirements from vertical industries, dynamically changing user behavior, and global digitalization
- Less (explicitly) addressed: flexibility and hence adaptation

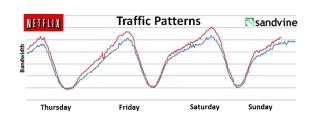
Image source: http://www.paleoplan.com

- In this talk, I will ...
 - ... present our definition of a measure for network flexibility ...
 - ... give concrete use cases of how to apply ...
 - ... raise more questions

The Internet

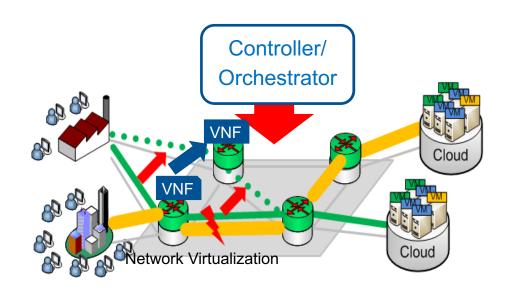

- ... is able to adapt its resources
- ... somehow (best-effort, TCP elasticity, BGP, OSPF)

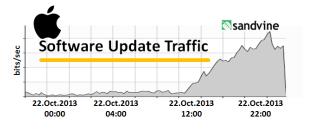
early-days simplicity

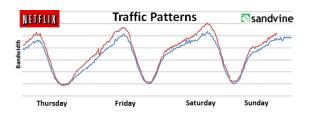

→ complex and ossified network system

very slow adaptation to new requirements

→ reaction to dynamic changes hardly possible






Network Function Virtualization (NFV) and Software Defined Networking (SDN)

...promise to create and adapt networks and functions on demand in software

All problems solved?

- Are we <u>fully flexible</u> already?
- How <u>far</u> can we go? What is the right network design?

We need

- a fundamental understanding of how to provide flexibility
- a quantitative measure for flexibility pro and contra certain designs

For networks, **flexibility** = ability to *support new requests* to change design requirements (traffic pattern, latencies,...) in a *timely* manner via adaptation of resources (topology, capacity, ...) if needed

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 program grant agreement No 647158 – FlexNets (2015 – 2020).

Flexibility Measure – proposed definition

$$\varphi_T$$
 (S) = $\frac{|supported\ new\ requests\ within\ T|}{|total\ number\ of\ given\ new\ requests|}$

 fraction of the number of new requests that can be supported in a time interval T of all given new requests

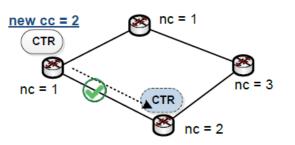
$$\varphi_{T}$$

$$|\varphi_{T}|$$

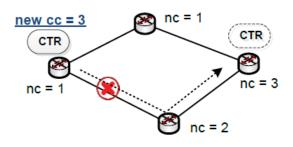
$$|\varphi_{T}$$

A simple illustration (1) network function: SDN controller

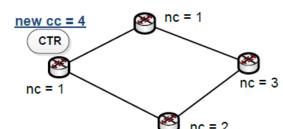
- New request to an SDN-network: Controller Capacity (cc) is increased
- Can such new request be supported?
 e.g. by migrating the controller to a node with higher capacity (NC)
- BUT: migration time cannot exceed "1 hop" (T)
 max. migration time T = 1 hop



A simple illustration (2): more requests

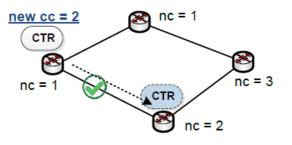

$$\varphi_{T=1hop} = \frac{|1 \text{ new request supported}|}{|3 \text{ given new requests}|} = \frac{1}{3} = 33\%$$

max. migration time T = 1 hop

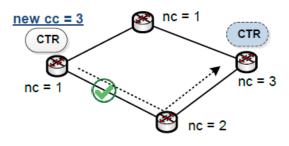


new request can be supported

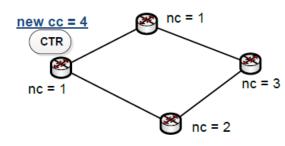
max. migration time T = 1 hop


new request can not be supported

max. migration time T = 1 hop


new request can not be supported

max. migration time T = ∞


new request can be supported

max. migration time T = ∞

new request can be supported

max. migration time T = ∞

new request can not be supported

$$\varphi_{T\to\infty} = \frac{|2 \text{ new request supported}|}{|3 \text{ given new requests}|} = \frac{2}{3} = 66\%$$

Prof. Wolfa

Flexibility a new measure? - Yes

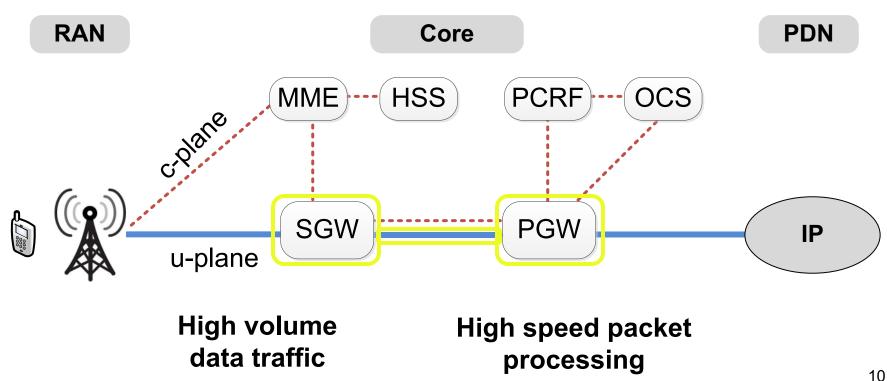
no single quality indicator for a Quality of Flexibilty (QoF)

- similar to QoS
- to be regarded by case (requirements, design goals, system)

we propose: *flexibility aspects* [1, 2]

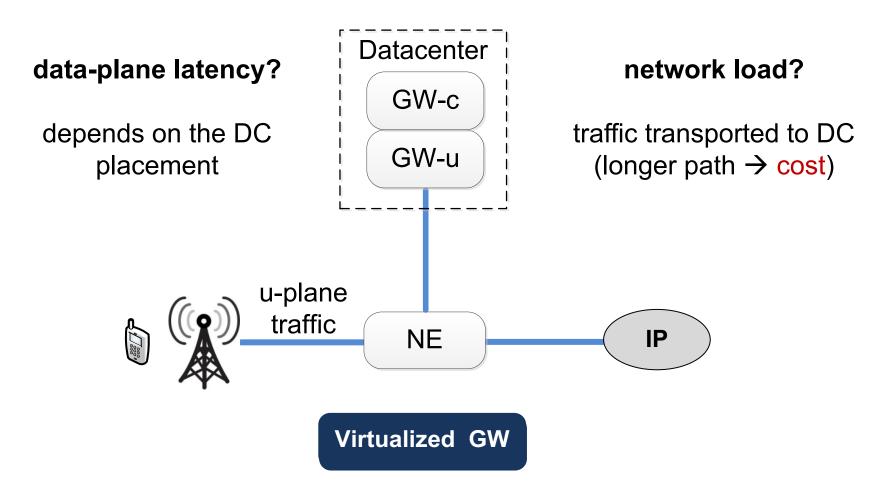
- similar as we do with QoS (rate, delay, throughput, jitter,...)
- shall allow us to quantitatively compare two different system designs
- Examples: flow steering, function placement

[1] W. Kellerer, A. Basta, A. Blenk, Using a Flexibility Measure for Network Design Space Analysis of SDN and NFV, SWFAN'16, IEEE INFOCOM Workshop, April 2016.

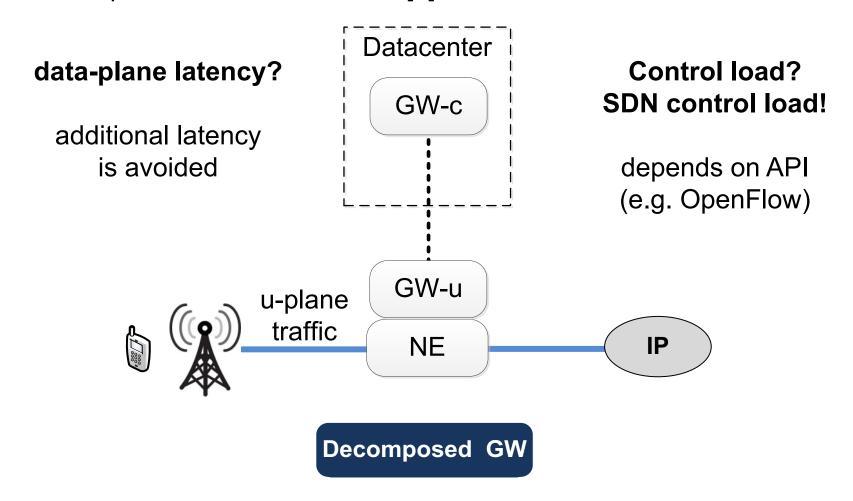

[2] W. Kellerer, A. Basta, A. Blenk, Flexibility of Networks: a new measure for network design space analysis?. arXiv preprint arXiv:1512.03770, 2015.

Use Case 1: The Function Placement Problem IIIII

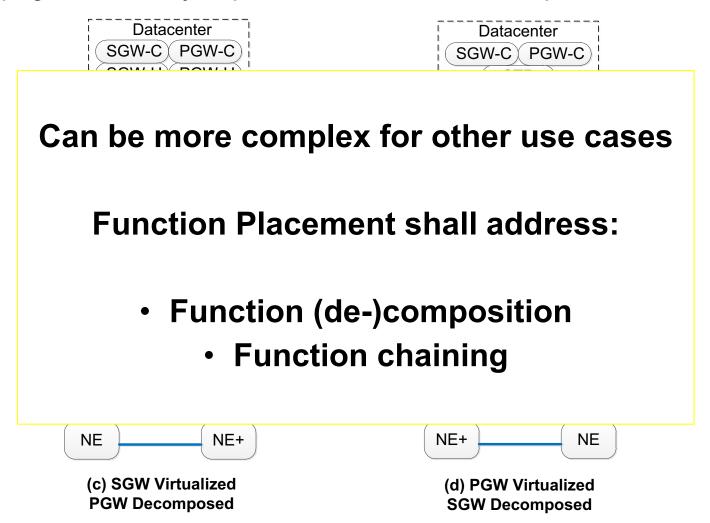
NFV = virtualize & move function (= everything) to DC


Example: mobile core network functions

Function Realization based on NFV


Virtualization of GW functions [3] → NFV

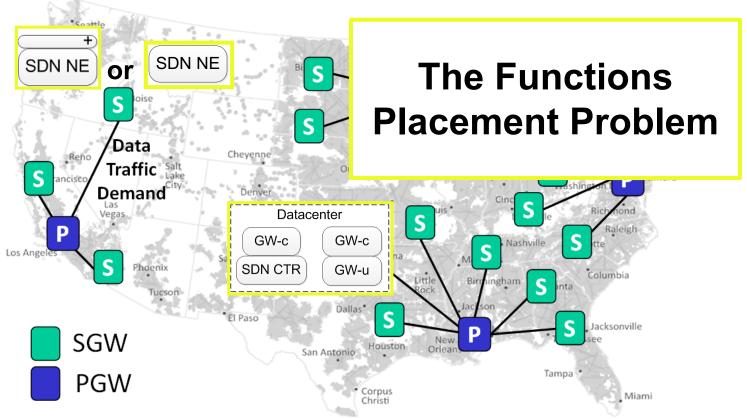
Function Realization based on SDN: move functions back


Decomposition of GW functions [3] via SDN

Interdependencies -> Function chains (mixed design)

Propagation latency depends on function chain = path SGW - PGW

Some Evaluation Studies [4]



- •Virtualize all GWs? decompose all? mixed deployment?
 - Which GWs should be virtualized? decomposed? DC(s) placement?
 - minimize core load

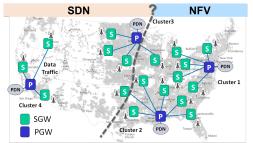
satisfy data-plane latency (

[4] A. Basta, W. Kellerer, M. Hoffmann, H. Morper, K. Hoffmann, Applying NFV and SDN to LTE Mobile Core Gateways; The Functions Placement Problem, AllThingsCellular14, Workshop ACM SICGOMM, Chicago, IL, USA, August 2014

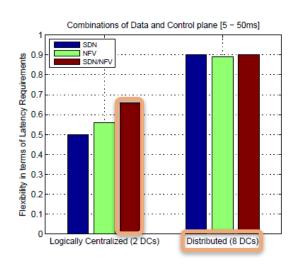
Flexibility Analysis of Function Placement

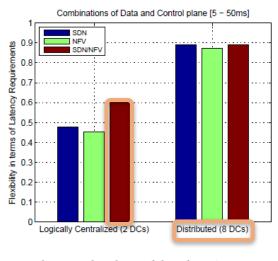
Use Case 1

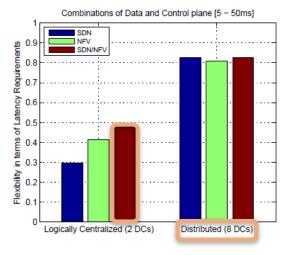
- 3 design choices (= systems) to compare [1]:
- (1) SDN design
- (2) NFV design
- (3) mixed SDN/NFV design


Parameter in focus:

- Flexibility to support different latency requirements for
 - control plane latency and data plane latency


all requests: 10 x10 =100


$$\varphi^{placement} \quad (design.x) = \frac{(\sum_{i} \sum_{j} feasibleSol_{i,j} \cdot v_{j})}{\sum_{i} \sum_{j} w_{i,j}}$$


Results [1]

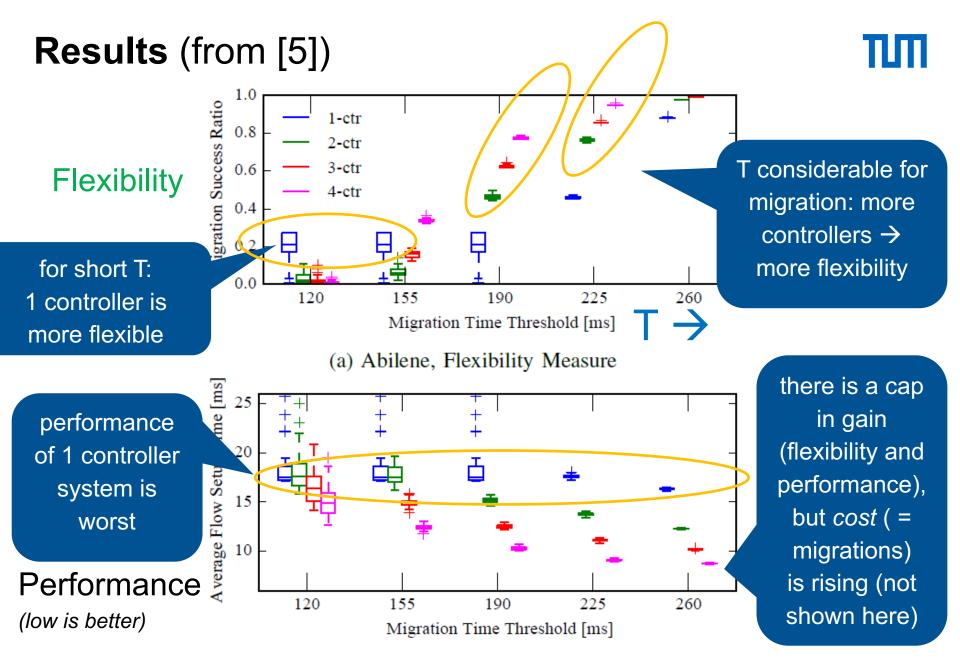
(a) equal weights for data and control latencies

(b) weights biased by data latency

(c) weights biased by control latency

With respect to the support of latency requirements in function placement:

- mixed SDN/NFV is more flexible for a logically centralized data center infrastructure
- for distributed data centers all three design choices are equally flexible


Use Case 2: Dynamic Controller Placement Problem

SDN controller as the network function

- place 1 ..n SDN controllers for time varying traffic input
 → controller migration/reconfiguration
- Evaluation parameters [5, 6]
 - Abilene network topology (11 nodes, 14 links)
 - new requests: 100 different flow profile requests over time (random)
 - N = 1,..., 4 controllers (design choices for comparison)
 - Algorithm finds optimal controller placement and flow to controller assignment optimization goal: minimize avg. flow setup time (<u>performance</u>)
 - How many controllers can be migrated (incl. control plane update) in time T? (success ratio → Flexibility)
 - Migrations and reconfigurations → Cost

[5] M. He, A. Basta, A. Blenk, W. Kellerer, *How Flexible is Dynamic SDN Control Plane?*, IEEE INFOCOM Workshop, SWFAN, Atlanta, USA, May 2017.

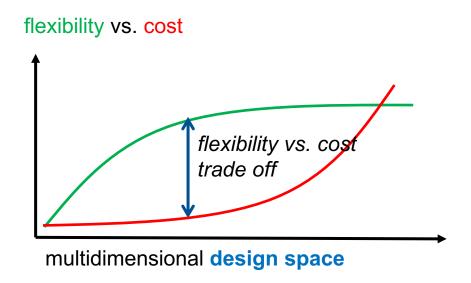
[6] M. He, A. Basta, A. Blenk, W. Kellerer, *Modeling Flow Setup Time for Controller Placement in SDN: Evaluation for Dynamic Flows,* IEEE International Conference on Communications (ICC), Paris, France, May 2017.

[5] M. He, A. Basta, A. Blenk, W. Kellerer, *How Flexible is Dynamic SDN Control Plane?*, IEEE INFOCOM Workshop, SWFAN, Atlanta, USA, May 2017.

Conclusion & Outlook

Key Takeaways

- Network research is faced with new requirements from emerging networked industries
- These include flexibility
- Network softwarization (NFV, SDN) is a key technology
- Need for
 - a measure to analyse flexibility
 - as a trade off with performance and cost


Outlook: Cost of Flexibility

What are the costs of a design for flexibility?

in terms of signaling overhead, number of data centers,...

Possible relationship (to be confirmed):

References for further reading (1)

- M. He, A. Basta, A. Blenk, W. Kellerer, How Flexible is Dynamic SDN Control Plane?,
 IEEE INFOCOM Workshop, SWFAN, Atlanta, USA, May 2017.
- M. He, A. Basta, A. Blenk, W. Kellerer,
 Modeling Flow Setup Time for Controller Placement in SDN: Evaluation for Dynamic Flows,
 IEEE International Conference on Communications (ICC), Paris, France, May 2017.
- W. Kellerer, A. Basta, A. Blenk, Using a Flexibility Measure for Network Design Space Analysis of SDN and NFV, IEEE INFOCOM Workshop, SWFAN, San Francisco, USA, April 2016.
- A. Basta, W. Kellerer, M. Hoffmann, H. Morper, K. Hoffmann,
 Applying NFV and SDN to LTE Mobile Core Gateways; The Functions Placement Problem,
 AllThingsCellular14, Workshop ACM SICGOMM, Chicago, IL, USA, August 2014.
- A. Basta, A. Blenk, M. Hoffmann, H. Morper, K. Hoffmann, W. Kellerer,
 SDN and NFV Dynamic Operation of LTE EPC Gateways for Time-varying Traffic Patterns, 6th International Conference on Mobile Networks and Management (MONAMI), Würzburg, Germany,
 September 2014.
- W. Kellerer, A. Basta, A. Blenk,
 Flexibility of Networks: a new measure for network design space analysis?,
 arXive report, December 2015.
 http://www.lkn.ei.tum.de/forschung/publikationen/dateien/Kellerer2015FlexibilityofNetworks:a.pdf

References for further reading (2)

- A. Basta et al., A Virtual SDN-enabled EPC Architecture: a case study for S-/P-Gateways functions, SDN4FNS 2013.
- A. Blenk, A. Basta, J. Zerwas, M. Reisslein, W. Kellerer, Control Plane Latency with SDN Network Hypervisors: Cost of Virtualization,
 IEEE Transactions on Network and Service Management, September 2016
- A. Blenk, A. Basta, M. Reisslein, W. Kellerer, Survey on Network Virtualization Hypervisors for Software Defined Networking,
 IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 655-685, January 2016.
- R. Sherwood et al., Carving research slices out of your production networks with OpenFlow, ACM CCR, 2010
- A. Al-Shabibi et al, OpenVirteX: A network hypervisor, Open Networking Summit, 2014
- 5G Initiative Team, NGMN 5G White Paper, 2015, https://www.ngmn.org/uploads/media/NGMN-5G-White-Paper-V1-0.pdf
- Mobile and wireless communications Enablers for the Twenty twenty Information Society (METIS), Final report on architecture (Deliverable D6.4), 2015, https://www.metis2020.com/wpcontent/uploads/deliverables/METIS-D6.4v2.pdf