Topological Analysis and Visualisation of Network Monitoring Data: Darknet case study

Marc Coudriau1,2, Abdelkader Lahmadi3, Jérôme François2

1ENS Ulm, Paris, France
2Inria Nancy Grand Est, Villers-les-Nancy, France
3LORIA, Université de Lorraine, France

NMRG meeting, IETF 99, Prague
Overview

- Motivation
- Background and related work
- Methodology
- Experimental results
 - Topologies of scanning activities
 - Topologies of DDoS activities
- Conclusion and future work
Network Monitoring Data

- Widely used for security, forensics and anomaly detection
- Identify malicious activities: traffic patterns and alerts triggering
- Internet Background Radiation: IBR
 - network telescopes, darknets
 - noisy traffic, but important source of forensic data
 - considerable volume and wide range of services and sources
 - extraction of structures and components
 - prediction and modeling of Internet malicious activities
Darknets

- Traffic sent to unused IP addresses
- Nonproductive traffic: no legitimate traffic
- Silently collecting all incoming packets, i.e. without replying to any of them
Problem statement

» What are the components of a darknet traffic?
» How can we filter this traffic to extract types of malicious activities?
Characterization of IBR

- First characterisation of IBR traffic: composition of observed protocols and ports [Pang et al, 2004]
- Probability to observe DoS attacks with a telescope [Moore et al, 2006]
- Characterization of IBR traffic over multiple darknets to extract invariant features and level of pollution of destination IP addresses [Wustrow et al, 2010]

Characterization of darknet data

- Analysis of main activities of a Darknet (scanning, worms propagation) using clustering and visualisation techniques [Fachka et al, 2016]
- Analysis of DNS queries to identify DRDoS (Distributed Reflection Denial of Service) [Fachka et al, 2015]

Visualisation of Darknet data

- InetVis plots darknet data on a 3D scatter plot and highlights visual patterns using IDS alerts like Bro or Snort [Van Riel et al, 2006]

- 3D visualisation tool to monitor darknet traffic in real time [Inoue et al, 2012]

Topological Data Analysis (TDA)

Definition
Branch of mathematics to analyze high dimensional and complex data by extracting invariant geometrics features that might help us discover relationships and patterns in data.

Fundamental properties
- Coordinate invariance
 - does not depend on coordinate system
 - analyze data collected from different platforms
- Deformation invariance
 - less sensitive to noise
 - handle approximate data
- compressed representation

TDA in practice

- Input data: 3D point cloud representing the Stanford Bunny (35947 points)
- Filter function: $f(x_i) \rightarrow \text{eccentricity}(x_i)$
- Output: network with 19 vertices and 18 edges

[Lum et al., 2013] Lum et al. "Extracting insights from the shape of complex data using topology". Scientific Reports, 3:1236.
TDA in practice

- Input data: 3D point cloud representing the Stanford Bunny (35947 points)
- Filter function: $f(x_i) \rightarrow \text{eccentricity}(x_i)$
- Output: network with 19 vertices and 18 edges

[Lum et al., 2013] Lum et al. "Extracting insights from the shape of complex data using topology". Scientific Reports, 3:1236.
TDA in practice

- Input data: 3D point cloud representing the Stanford Bunny (35947 points)
- Filter function: \(f(x_i) \rightarrow \text{eccentricity}(x_i) \)
- Output: network with 19 vertices and 18 edges

[Lum et al., 2013] Lum et al. "Extracting insights from the shape of complex data using topology". Scientific Reports, 3:1236.
TDA in practice

- Input data: 3D point cloud representing the Stanford Bunny (35947 points)
- Filter function: \(f(x_i) \rightarrow \text{eccentricity}(x_i) \)
- Output: network with 19 vertices and 18 edges

[Lum et al., 2013] Lum et al. "Extracting insights from the shape of complex data using topology". Scientific Reports, 3:1236.
TDA in practice

- Input data: 3D point cloud representing the Stanford Bunny (35947 points)
- Filter function: $f(x_i) \rightarrow \text{eccentricity}(x_i)$
- Output: network with 19 vertices and 18 edges

[Lum et al., 2013] Lum et al. "Extracting insights from the shape of complex data using topology". Scientific Reports, 3:1236.
TDA in practice

- Input data: 3D point cloud representing the Stanford Bunny (35947 points)
- Filter function: $f(x_i) \rightarrow \text{eccentricity}(x_i)$
- Output: network with 19 vertices and 18 edges

[Lum et al., 2013] Lum et al. "Extracting insights from the shape of complex data using topology". Scientific Reports, 3:1236.
Method overview

Objective

- extracting activities from noisy monitoring data collected by LHS darknet (/20 subnetwork)
- data set: a month of collected data with a rate of 3 millions packets per day

Apply Mapper method from TDA on darknet traffic to extract attack patterns (scanning, DDoS)
Mapper method details

- **Input**: feature vectors of darknet packets (the timestamp, the source and destination IP addresses and ports, and the protocol)
- **Parameters**: number of intervals (resolution), overlapping percentage (zoom)
- **Output**:
 1. Filter function $f: \mathbb{R}^6 \rightarrow \mathbb{R}^6$
 2. Put data into overlapping bins: $f^{-1}(a_i, b_i)$
 3. Cluster each bin using DBSCAN and a distance function
 4. Create a graph
 - **Vertex**: a cluster of a bin
 - **Edge**: nonempty intersection between clusters
Partial clustering details

- Apply DBSCAN clustering within each hypercube
- Two parameters
 - ϵ: the maximum distance between two points to be considered in the same cluster
 - minpts: the number of neighbors that a point should have to be considered as a cluster
- Used distance function
 - Difference for timestamp attribute, IP destination and source addresses
 - Equality metric for protocol and ports names: 0 or 1
Separating patterns

Mapper parameters

- 1000 packets with $\epsilon = 0.5$ and $\text{minpts}=3$ and overlap = 10%

Extracted patterns

- large green dot: scanning activity on port 53413 (known exploit)
- red component: probing Telnet and SSH accesses
- orange component: sparse scans
- yellow component: two randomized scans and some noise
Extracting scanning activities

- 8000 packets, $\epsilon = 0.05$ and minpts=20, overlap=5%
- Parameters estimation: trial-and-error method, but remains stable when found
- Suricata 3.0 detects only 4 scanning activities: grouping packets
Extracting DDoS activities

- 310 000 UDP packets (DNS responses to a spoofed darknet IP address)
- $\epsilon = 0.03$ and $\text{minpts}=100$, overlap=1%
Performance analysis

- Results obtained with a machine having a Quad Core CPU at 2.83GHz, 15 GB RAM and running Linux Mint
- Mapping and clustering of 1024 packets takes a processing time between 0.4s to 0.9s
- Analyzing 3 millions of packets (a darknet day) requires 11 minutes
- Partial clustering in hypercubes: more efficient than global clustering
- What a known attacker sent today?
 - 32768 packets analyzed in two minutes
- Increasing performance
 - More computing power
 - Parallelization of the tool to make near real-time analysis
Conclusion and future work

- Topological Data Analysis applied to darknet traffic
- Mapper method: filter function (number of intervals and their overlap) and partial clustering using DBSCAN
- Extraction of activities: packets belonging to the same activity (scans and DDoS)
- Experimental results: discovering more patterns than the well-used Suricata IDS

Future work

- Including more packet features
- Extract more activities and analyze their persistence
Acknowledgment

This work was partially funded by HuMa, a project funded by Bpifrance and Region Lorraine under the FUI 19 framework. It is also supported by the High Security Lab hosted at Inria Nancy Grand Est.
Topological Analysis and Visualisation of Network Monitoring Data: Darknet case study

Marc Coudriau1,2, Abdelkader Lahmadi3, Jérôme François2

1ENS Ulm, Paris, France
2Inria Nancy Grand Est, Villers-les-Nancy, France
3LORIA, Université de Lorraine, France

NMRG meeting, IETF 99, Prague