
Proof of Transit

Frank Brockners, Shwetha Bhandari,
Sashank Dara, Carlos Pignataro (Cisco)
Hannes Gedler (rtbrick)
Steve Youell (JMPC)
John Leddy (Comcast)
David Mozes (Mellanox Technologies)
Tal Mizrahi (Marvell)

IETF 99 Prague – OPSEC WG; July 19th, 2017

draft-brockners-proof-of-transit-03.txt

https://tools.ietf.org/html/draft-brockners-proof-of-transit-03.txt

Consider TE, Service Chaining, Policy Based Routing, etc...

“How do you prove that traffic follows the selected path?”

X

B

CA Verifier

• Meta-data added to all user traffic

• Based on “Share of a secret”

• Provisioned by controller over
secure channel to hops where “proof
of transit” is required

• Updated at every hop where
proof of transit is required

• Verifier checks whether
collected meta-data allows
retrieval of secret

• “Proof of Transit”: Path verified

Ensuring Path and/or Service Chain Integrity
Approach

Controller Secret

X

B

CA Verifier

Solution Approach 1: Leveraging Shamir’s Secret Sharing
Polynomials 101

- Line: Min 2 points

- Parabola: Min 3 points

- Cubic function: Min 4 points

General: It takes k+1 points to defines a polynomial of degree k.

• Each service is given a point
on the curve

• When the packet travels through
each service it collects these points

• A verifier can reconstruct the curve
using the collected points

• Operations done over a finite field
(mod prime) to protect against
differential analysis

Solution Approach 1: Leverage Shamir’s Secret Sharing
“A polynomial as secret”

(3,46)

(2,28)

(1,16)

X

B

CA

“Secret”:

3𝑥2 + 3𝑥 + 10

3𝑥2 + 3𝑥 + 10

Verifier

• Leverage two polynomials:

• POLY-1 secret, constant: Each hop gets a point on POLY-1
Only the verifier knows POLY-1

• POLY-2 public, random and per packet.
Each hop generates a point on POLY-2 each time a packet crosses it.

• Each service function calculates (Point on POLY-1 + Point on POLY-2) to
get (Point on POLY-3) and passes it to verifier by adding it to each
packet.

• The verifier constructs POLY-3 from the points given by all the services
and cross checks whether POLY-3 = POLY-1 + POLY-2

• Computationally efficient: 2 additions, 1 multiplication, mod prime per hop

Operationalizing the Solution Approach 1

POLY-1

Secret – Constant

POLY-2

Public – Per Packet

+

=

POLY-3

Secret – Per Packet

Operationalizing the Solution Approach 1

• Leverage two polynomials:

• POLY-1 secret, constant: Each hop gets a point on POLY-1
Only the verifier knows POLY-1

• POLY-2 public, random and per packet.
Each hop generates a point on POLY-2 each time a packet
crosses it.

• Each service function calculates (Point on POLY-1 + Point on
POLY-2) to get (Point on POLY-3) and passes it to verifier by
adding it to each packet.

• The verifier constructs POLY-3 from the points given by all the
services and cross checks whether POLY-3 = POLY-1 + POLY-2

• Computationally efficient:
2 additons, 1 multiplication, mod prime per hop

POLY-1

Secret – Constant

POLY-2

Public – Per Packet

+

=

POLY-3

Secret – Per Packet

Meta Data for Service/Path Verification

• Verification secret is the independent
coefficient of POLY-1

• Computation/retrieval through a cumulative
computation at every hop (“cumulative”)

• For POLY-2 the independent coefficient is
carried within the packet (typically a
combination of timestamp and random
number)

• n bits can service a maximum of 2n packets

• Verification secret and POLY-2 coefficient
(“random”) are of the same size

• Secret size is bound by prime number

Transfer

Rate

RND/

Secret

Size

Max # of packets

(assuming 64 byte

packets)

Time that “random” lasts at

maximum

1 Gbps 64

10 Gbps 64

100 Gbps 64

10 Gbps 56

10 Gbps 48

10 Gbps 40

1 Gbps 32 2200 seconds, 36 minutes

10 Gbps 32 220 seconds, 3.5 minutes

100 GBps 32 22 seconds

Solution Approach 2:
Nested Crypto: “Compose an Onion”

• Approach

• A service is described by a set of secrets, where each secret
is associated with a service function. Service functions
encrypt portions of the meta-data as part of their packet
processing.

• Only the verifying node has access to all secrets. The
verifying nodes re-encrypts the meta-data to validate whether
the packet correctly traversed the service chain.

• Notes

• Nested encryption allows to check the order in which the
nodes where traversed

• To be used only when hardware assisted encryption is
available. i.e. AES-NI instructions or equivalent. Otherwise
this could be very costly operation to verify at line speed.

“S1”
“S2”

“S3”

Service-Secrets are nested
like layers of an onion

1. A controller provisions all the nodes with their respective secret keys.

2. A controller provisions the verifier with all the secret keys of the nodes.

3. For each packet, the ingress node generates a random number RND and encrypts it with its secret
key to generate CML value

4. Each subsequent node on the path encrypts CML with their respective secret key and passes it along

5. The verifier is also provisioned with the expected sequence of nodes in order to verify the order

6. The verifier receives the CML, RND values, re-encrypts the RND with keys in the same order as
expected sequence to verify.

Solution Approach 2:
“Compose the Onion”

S1 S2 S3 S4 S5

• Typical: 16* Bytes of Meta-Data

• Random – Unique random number
(e.g. Timestamp or combination of
Timestamp and Sequence number)

• Cumulative (algorithm dependent)

• Transport options for different protocols

• Network Service Header

• IPv6

• Segment Routing

• GRE

• ...

Proof of Transit: Meta-Data Transport Options

+-+
| Random |
+-+
| Random (contd) |
+-+
| Cumulative |
+-+
| Cumulative (contd) |
+-+

*Note: Smaller numbers are feasible, but require a more frequent renewal of the polynomials/secrets.

2nd Polynomial

Interative computation of secret

Meta-Data Provisioning

• Meta-Data for Service Chain Verification
(POT) provisioned through a controller
(OpenDaylight App)

• Netconf/YANG based protocol

• Provisioned information from Controller to
Service Function / Verifier

• Service-Chain-Identifier
(to be mapped to service chaining technology
specific identifier by network element)

• Service count (number of services in the chain)

• 2 x POT-key-set (even and odd set)

• Secret (in case of communication to the verifier)

• Share of a secret, service index

• 2nd polynomial coefficients

• Prime number

Service Chain Verification App

S3 VerifierS2S1

POT-key-sets:
Prime

secret share
poly-2

POT-key-sets:
Prime

secret share
poly-2

POT-key-sets:
Prime

secret share
poly-2

POT-key-sets:
Secret
Prime

secret share
poly-2

Verification request for
a particular service chain

Open Source Implementation

OpenDaylight Carbon Release: Controller App

• User guide: http://docs.opendaylight.org/en/latest/user-guide/service-function-
chaining.html?highlight=sfc#sfc-proof-of-transit-user-guide

• Developer guide: http://docs.opendaylight.org/en/latest/developer-guide/service-
function-chaining.html?highlight=sfc#sfc-proof-of-transit-developer-guide

FD.io/VPP: Data Path Implementation

• Documentation: https://docs.fd.io/vpp/17.04/ioam_ipv6_doc.html

• Code: https://gerrit.fd.io/r/gitweb?p=vpp.git;a=tree;f=src/plugins/ioam/lib-
pot;h=fcaeb0f1923b7d0f7d8680d5811b6166b59c516f;hb=refs/heads/master

See also: https://github.com/CiscoDevNet/iOAM

More detailed presentation on POT:

https://www.slideshare.net/frankbrockners/proof-of-transit-securely-verifying-a-path-or-service-chain

http://docs.opendaylight.org/en/latest/user-guide/service-function-chaining.html?highlight=sfc#sfc-proof-of-transit-user-guide
http://docs.opendaylight.org/en/latest/developer-guide/service-function-chaining.html?highlight=sfc#sfc-proof-of-transit-developer-guide
https://docs.fd.io/vpp/17.04/ioam_ipv6_doc.html
https://gerrit.fd.io/r/gitweb?p=vpp.git;a=tree;f=src/plugins/ioam/lib-pot;h=fcaeb0f1923b7d0f7d8680d5811b6166b59c516f;hb=refs/heads/master
https://github.com/CiscoDevNet/iOAM
https://www.slideshare.net/frankbrockners/proof-of-transit-securely-verifying-a-path-or-service-chain

Next Steps

• The authors appreciate additional comments and feedback on
draft-brockners-proof-of-transit

• Will OPSEC WG consider working on Proof-Of-Transit?

