RPKI Deployment: Status, Challenges and the Learning-Validator

Amir Herzberg

Bar Ilan Univ, Fraunhofer SIT, Univ of Connecticut

Joint project with Yossi Gilad, Tomas Hlavacek, Yafim Kazak, Refi Peretz, Michael Schapira and Haya Shulman,

RPKI Deployment: Agenda

- RPKI in a foil
- ROA adoption: trends
- Wrong ROA: causes and damages
- ROV adoption status, challenges
- Impact of partial ROV adoption
- Improving deployment
 - ROAlert.org
 - The Smart Validator
 - Demo
- Conclusions

RPKI: Resource Public Key Infrastructure

- IETF standard [RFC 6480]; main goal: prevent (sub)prefix hijacks (false origin domain)
- Idea: issue (signed) Route Origin Authorization (ROA):

- For simplicity, we ignore signing details
- Domains should do Route Origin Validation (ROV):
 - **D**rop BGP announcements where origin conflicts with ROA
 - I.e.: Origin is not 333 <u>or</u> more specific than /20

ROA Adoption History

Drop BGP announcements → lose (good?) traffic... So, how many domains do Route Origin Validation?

Wrong ROAs??

- Requires **both** authorizations (ROAs) and validation (ROV)
- Risk: ROV with **Wrong ROA→** drop legit-yet-invalid announcements
 - Does wrong-ROAs happen? Typical, real-life example:

Measuring Adoption of Route Origin Validation

- Challenge: no direct way to measure the adoption of ROV
 no published measurements
- Idea: use Route-View-project's BGP-collectors and wrong ROAs!
- Observation: if collector receives invalid announcement
 Entire route does not enforce ROV !

Measuring Adoption of Route Origin Validation

- Challenge: no direct way to measure the adoption of ROV
 no published measurements
- Observation : if collector receives invalid announcement →
 Entire route does not enforce ROV !

<u>At least</u> 80 of 100 largest domains do not enforce ROV ! Can we meaure more precisely?

Better ROV Measurements...

- Dependency on existing wrong ROAs may be misleading
- More reliable: publish correct/wrong ROAs (same origin)
- Three different controlled experiments, multiple times:
 - Use RouteView Collectors (as before)
 - Use Trace-route to RIPE atlas probes
 - Use `echo' from servers (ICMP ping or TCP SYN/ACK)
- Experiments still ongoing
- Initial results: only handful of domains enforce ROV
 - **None** of the 100 largest domains (cf. <20)
- Similar results apparently from measurements by Randy Bush and others (didn't yet see details)
- What's the impact of partial-deployment of ROV?

Partial Adoption of ROV: Collateral damage

- Domains <u>not doing ROV</u> might cause ROV-enforcing domains to fall victim to prefix hijacking
- Control-Plane vs. Data-Plane Mismatch: domain discards invalid announcement, yet data flows to attacker

Security in Partial ROV Adoption: Simulation Framework

Security with Partial ROV Adoption

- Subprefix-hijack success rate for adoption by x largest domains
- Compare: 100% vs. 25% adoption by other domains
- Significant benefit <u>but only if</u> almost all large domains adopt and most other domains adopt too
- We are very far from this!

RPKI Deployment: Agenda

- RPKI in a foil
- ROA adoption: trends
- Wrong ROA: causes and damages
- ROV adoption status, challenges
- Impact of partial ROV adoption
- Improving deployment
 - ROAlert.org
 - The Smart Validator
 - Demo
- Conclusions

Fixing ROAs and ROV deployment

- ROAlert.org: identifying wrong ROAs
 - Also email alerts when sysadmin-email located: 40% fixed!
 - Should be deployed `officially'
- Smart validator (experiments with Cisco, LinkedIn, .. You??)
 - Manual + Learning mode (identify wrong ROAs)
 - Two conservative modes:
 - Ignore mode: ignore wrong ROAs, respect correct ROAs
 - Auto-Extend mode: add `virtual' ROAs (to correct `wrong')
 - **ROV++**: reduce collateral-damage; gives **incentive** to deploy
 - Path-end validation: easy, strong extension to RPKI
 - See SigComm16 paper or ask me ^(C)

Learning based on time:

Possible Hijacks duration [Days] from 08-2016 -> 06-2017

Architecture

Smart Validator Dashboard Examples

Manual+Learning mode

Auto-Extend mode

Beyond BGP: Routing Against DoS

- BGP is limited to single fixed route
 - Easier to congest e.g., in Denial-of-Service (DoS)
- BGP isn't congestion-sensitive
 - Route does not depend on congestion, delays, loss
 - Slow response to link failure
- IP provides only best-effort service
 - No quality guarantees (max delay, max loss rate)
 - Quality-of-Service (QoS) extensions: only within domain
- Secure Accountable Inter-domain Forwarding
 - On going project talk to me...

Conclusions

- Routing security: fun & important research area
- RPKI improves BGP's security... if deployed widely
 - → ROAlert and Improved validator (ROV++)
- BGPsec deployment... unlikely ?
 - Path-End instead? Effective and deployable!

More questions? Thanks !

