
CCNX INTEREST AGGREGATION
Marc Mosko

Palo Alto Research Center

ICNRG Interim Meeting, Sept 30, 2016 (Kyoto, Japan)

1

PRINCIPLES

•  Minimize coupling between consumer and forwarders

•  No timers on forwarders

•  Provable properties

2

DIFFERENCE FROM ICNRG -03 DRAFT

•  Spelled out algorithms in more detail

•  Adopted Interest HopLimit decrement idea [1]

3

[1] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough. Enabling Correct Interest
Forwarding and Retrans- missions in a Content Centric Network. In Proc. ACM ANCS’15,
pages 135–146, Oakland, California, 2015.

PROPERTIES (1-3)

1.  Aggregation: If there are no losses and no
retransmissions, then for each link in the forwarding
path exactly one Interest and at most one
ContentObject traverse the link.

2.  Retransmissions: If there are retransmissions by one
or more consumers and those retransmissions do not
pass a ContentObject response in flight, then at most
one ContentObject traverses the reverse path.

3.  Interest In Flight: If a retransmission passes a
ContentObject in flight on a given link, then that Interest
will propagate only as far as the first cached copy of the
response.

4

PROPERTIES (4-6)

4.  ContentObject In Flight: If a retransmission passes a
ContentObject in flight on a given link, then there will be
a duplicate ContentObject sent on that link, but it will not
propagate further than that link.

5.  Cycle Termination: An Interest that travels in a cycle
will not repeat the same cycle.

5

PROPERTY 6: CYCLE TERMINATION

•  The Cycle Termination property is significantly different
than prior CCNx 0.x and NDN cycle termination. In
those protocols, because of the nonce, an Interest that
visits the same node twice – assuming the nonce is
remember long enough – is dropped.

•  This means that such a node cannot continue using
other paths, even if those will reach the destination.

•  In CCNx 1.0, the cycle termination property means that
an Interest will not repeat the same cycle, but it could be
forwarded along another shorter path.

•  Described in more detail in a few slides.

6

HOPLIMIT

•  An Interest predecessor may be remote (i.e. another
node) or local (i.e. an application connecting directly to
the forwarder).

•  The HopLimit indicates the number of allowed remote
node hops.

•  Forwarding to and from an application does not count as
a hop.

•  This semantic allows an implementation, if desired, to
indicate “for me” in the FIB table via routes with a 0
HopCount, which is the notional model we use here. As
this is internal behavior of a forwarder, it is not
standardized.

7

8

CCNx 1.0 Interest Aggregation — 3/7

We define two Interests to be similar if they can be
satisfied by the same Content Object. There are three
fields used in matching a Content Object to an Inter-
est, so any two Interests with those fields equal will be
satisfied by the same ContentObject.

Definition 1 (Interest Similarity) Two Interests are con-
sidered similar if they have the same Name, the same KeyId
restriction, and the same ContentObjectHash restriction.

Definition 2 (Predecessor) A predecessor of an Interest is
the unique previous hop that sent the Interest. It may be an
Ethernet MAC address for layer 2 forwarder or an IP address
of a UDP or TCP or other similar tunnel.

CCNx 1.0 uses an InterestReturn message to indi-
cate to a predecessor that the current node will not or
cannot satisfy the Interest by returning a Content Ob-
ject. The InterestReturn message has a type, such as Ho-
pLimit and NoRoute. We indicate the type by writing it as
InterestReturn(type). The HopLimit type means
the Interest cannot be processed because the HopLimit
in the Interest is too small to reach the longest matching
prefix of the route to the content. The NoRoute type
means that the node has no feasible route to the Interest
name.

In this presentation, we do not show the details of
how the Interest Lifetime functions; it is described in [1].
A consumer may set the InterestLifetime to the number
of milliseconds, relative from the transmission time, that
it will wait for a response. It does not need to be re-
lated to a round trip time. A PIT entry for a predecessor
expires at the time max{PreviousExpiryT ime, now +

InterestLifetime}. It is a non-decreasing function
based on prior Interests from the same predecessor. The
Interest Lifetime plays no role in aggregation, except
that an expired PIT entry is treated as if it does not
exist (assuming one uses a lazy delete strategy). A for-
warder makes no commitment to hold an Interest for
any amount of time, it only makes its best effort to keep
PIT entries until they are satisfied or grow so old the for-
warder must make room for new PIT entries. We do not
require a forwarder to maintain per-predecessor expiry
times. It could maintain a single maximum expiry time,
in which case a ContentObject may be sent down old
reverse paths, which would waste some bandwidth.

CCNx 1.0 applies the following semantics to the Ho-
pLimit in an Interest. It distinguishes between a prede-
cessor that is remote (i.e. another node) or one that is
local (i.e. an application connecting directly to the for-
warder). The HopLimit indicates the number of allowed
remote node hops. Forwarding to and from an applica-
tion does not count as a hop. This semantic allows an
implementation, if desired, to indicate “for me” in the
FIB table via routes with a 0 HopCount, which is the no-
tional model we use here. As this is internal behavior of

a forwarder, it is not standardized and a specific imple-
mentation can handle the application interface through
other means.

Definition 3 (HopLimit) The HopLimit in an Interest de-
termines the number of subsequent remote forwarding hops
allowed for the Interest. An application may set the HopLimit
to any permissible value (i.e. 0 - 255). If an application sets
the HopLimit to 0, it means the Interest will not be sent to
a remote forwarder – it can only be sent to another applica-
tion co-located with it. It is an error, therefore, to receive an
Interest from a remote node with a HopLimit of 0.

Algorithm 1 Receive Interest

1: procedure RECEIVEINTEREST(Predecessor P, Inter-
est I)

2: if P is remote then
3: if I.HopLimit = 0 then
4: Send InterestReturn (HopLimit)
5: Drop Interest
6: else
7: Decrement I.HopLimit
8: end if
9: end if

10: if Satisfy I from ContentStore then
11: Send ContentObject to P
12: else
13: V erdict AGGREGATE(P, I)
14: if Verdict is Forward then
15: if FORWARDINTEREST(P,I) is false then
16: Drop Interest
17: end if
18: end if
19: end if
20: end procedure

Algorithm 2 Interest Aggregation

1: function AGGREGATE(Predecessor P, Interest I)
2: if does not exist a PIT entry for I then
3: Create PIT entry with Predecessor P
4: Return Forward
5: else if PIT entry exists with Predecessor P then
6: Retransmission from P
7: Return Forward
8: else
9: Add Predecessor P to PIT Entry

10: Return Aggregate
11: end if
12: end function

Alg. 2 describes the aggregation algorithm, which
is executed within the larger context of the Interest pro-
cessing pipeline in Alg. 1. The aggregation algorithm is

HopLimit must
decrease each hop.

9

CCNx 1.0 Interest Aggregation — 3/7

We define two Interests to be similar if they can be
satisfied by the same Content Object. There are three
fields used in matching a Content Object to an Inter-
est, so any two Interests with those fields equal will be
satisfied by the same ContentObject.

Definition 1 (Interest Similarity) Two Interests are con-
sidered similar if they have the same Name, the same KeyId
restriction, and the same ContentObjectHash restriction.

Definition 2 (Predecessor) A predecessor of an Interest is
the unique previous hop that sent the Interest. It may be an
Ethernet MAC address for layer 2 forwarder or an IP address
of a UDP or TCP or other similar tunnel.

CCNx 1.0 uses an InterestReturn message to indi-
cate to a predecessor that the current node will not or
cannot satisfy the Interest by returning a Content Ob-
ject. The InterestReturn message has a type, such as Ho-
pLimit and NoRoute. We indicate the type by writing it as
InterestReturn(type). The HopLimit type means
the Interest cannot be processed because the HopLimit
in the Interest is too small to reach the longest matching
prefix of the route to the content. The NoRoute type
means that the node has no feasible route to the Interest
name.

In this presentation, we do not show the details of
how the Interest Lifetime functions; it is described in [1].
A consumer may set the InterestLifetime to the number
of milliseconds, relative from the transmission time, that
it will wait for a response. It does not need to be re-
lated to a round trip time. A PIT entry for a predecessor
expires at the time max{PreviousExpiryT ime, now +

InterestLifetime}. It is a non-decreasing function
based on prior Interests from the same predecessor. The
Interest Lifetime plays no role in aggregation, except
that an expired PIT entry is treated as if it does not
exist (assuming one uses a lazy delete strategy). A for-
warder makes no commitment to hold an Interest for
any amount of time, it only makes its best effort to keep
PIT entries until they are satisfied or grow so old the for-
warder must make room for new PIT entries. We do not
require a forwarder to maintain per-predecessor expiry
times. It could maintain a single maximum expiry time,
in which case a ContentObject may be sent down old
reverse paths, which would waste some bandwidth.

CCNx 1.0 applies the following semantics to the Ho-
pLimit in an Interest. It distinguishes between a prede-
cessor that is remote (i.e. another node) or one that is
local (i.e. an application connecting directly to the for-
warder). The HopLimit indicates the number of allowed
remote node hops. Forwarding to and from an applica-
tion does not count as a hop. This semantic allows an
implementation, if desired, to indicate “for me” in the
FIB table via routes with a 0 HopCount, which is the no-
tional model we use here. As this is internal behavior of

a forwarder, it is not standardized and a specific imple-
mentation can handle the application interface through
other means.

Definition 3 (HopLimit) The HopLimit in an Interest de-
termines the number of subsequent remote forwarding hops
allowed for the Interest. An application may set the HopLimit
to any permissible value (i.e. 0 - 255). If an application sets
the HopLimit to 0, it means the Interest will not be sent to
a remote forwarder – it can only be sent to another applica-
tion co-located with it. It is an error, therefore, to receive an
Interest from a remote node with a HopLimit of 0.

Algorithm 1 Receive Interest

1: procedure RECEIVEINTEREST(Predecessor P, Inter-
est I)

2: if P is remote then
3: if I.HopLimit = 0 then
4: Send InterestReturn (HopLimit)
5: Drop Interest
6: else
7: Decrement I.HopLimit
8: end if
9: end if

10: if Satisfy I from ContentStore then
11: Send ContentObject to P
12: else
13: V erdict AGGREGATE(P, I)
14: if Verdict is Forward then
15: if FORWARDINTEREST(P,I) is false then
16: Drop Interest
17: end if
18: end if
19: end if
20: end procedure

Algorithm 2 Interest Aggregation

1: function AGGREGATE(Predecessor P, Interest I)
2: if does not exist a PIT entry for I then
3: Create PIT entry with Predecessor P
4: Return Forward
5: else if PIT entry exists with Predecessor P then
6: Retransmission from P
7: Return Forward
8: else
9: Add Predecessor P to PIT Entry

10: Return Aggregate
11: end if
12: end function

Alg. 2 describes the aggregation algorithm, which
is executed within the larger context of the Interest pro-
cessing pipeline in Alg. 1. The aggregation algorithm is

CCNx 1.0 Interest Aggregation — 4/7

Algorithm 3 FIB Lookup

1: function FIBLOOKUP(Predecessor P, Interest I)
2: Exclude FIB entries that point to P
3: NextHops LongestPrefixMatch(I)
4: for N 2 NextHops do
5: if I.HopLimit < N.HopCount then
6: Remove N from NextHops
7: end if
8: end for
9: Return NextHops

10: end function

Algorithm 4 Forward Interest

1: function FORWARDINTEREST(Predecessor P, Inter-
est I)

2: NextHops FIBLOOKUP(P, I)
3: if NextHops is not empty then
4: for N 2 NextHops do
5: I.HopLimit N.HopCount
6: Send I to N
7: end for
8: Return true
9: else

10: Send InterestReturn (NoRoute)
11: Return false
12: end if
13: end function

straightforward and described next. It must be execute
within specific handling of the Interest HopLimit so that
Interest loops will not repeat and not be confused with
Interest retransmissions.

The Interest aggregation algorithm, Alg. 2 is as fol-
lows. When an Interest is received from predecessor P ,
the node first checks to see if a PIT entry exists for the
Interest. if it does not, then the PIT entry is created and
the Interest is forwarded. If a PIT entry already exists
and predecessor P is already listed in the predecessor
set, then the Interest is a retransmission from that path.
In this case, the Interest is forwarded. If a PIT entry
already exists and predecessor P is not already listed in
the predecessor set, then P is added to the set and the
Interest is aggregated.

To prevent forwarding table loops – whether per-
manent or temporary – from being seen as Interest re-
transmissions, we need to apply a rule to Interest for-
warding that ensures the Interest HopLimit decreases
enough at each hop such that if it cycles around it can
no longer be forwarded down that same cycle. This
technique was first proposed in [4]. This is achieved in
Alg. 4 where the Interest HopLimit is set to be exactly the
node’s FIB table hop count distance to the destination.
Because the HopLimit must decrease by at least 1 each

hop and the FIB Lookup algorithm, Alg. 3, excludes next
hops that cannot be reached by the remaining HopLimit,
this technique prevents an Interest from repeating a cy-
cle.

3. Analysis

In this section, we prove each claim of the aggregation
algorithm in cases where there are no forwarding table
cycles. The next section will how that the same cycle
does not repeat, so these properties hold in those cases
too.

Theorem 1 (HopLimit Decrease) The HopLimit in an In-
terest decreases every remote hop.

Proof: An application is considered a sink or a source
only, so they are excluded and we only consider remote
hops. By the functionality of Alg. 1, lines 3 - 8, a node
will either drop an Interest with a 0 HopLimit on receive,
or it will decrement the HopLimit by one.

For the HopLimit to not decrease, it must remain the
same or increase. This means that a forwarder must ei-
ther not update the HopLimit when it forwards the inter-
est or update it with a larger value. Alg. 4 line 5 always
updates the HopLimit before forwarding an Interest, so
we only need to consider that case. The HopLimit is
updated to the HopCount of the specific next hop being
used. For the HopLimit to not decrease, the next hop’s
HopCount must be no smaller than the original Ho-
pLimit before decrement (Alg. 1, Line 7). Alg. 3, Line 5,
however, maintains the invariant that a FIB entry’s Hop-
Count must be less than or equal to the decremented
HopLimit. By contradiction of the invariant, the hop
limit must decrease by at least 1 every remote hop.

Theorem 2 (Aggregation Interests) Assuming each con-
sumer only sends one Interest, there are no losses, and there
do not exist any cycles in the forwarding tables, then the pro-
ducer receives at most one Interest per link no matter how
many consumers send Interests.

Proof: By the premise, the forwarding tables form a
DAG. Therefore, a forwarder can only receive an Inter-
est from a consumer or from a downstream forwarder.
This means that some forwarders will only service con-
sumers (F0), some will service a mix of consumers and
downstream forwarders (F1), and some will only service
downstream forwarders (F2). Note that F2 is a special
case of F1, where the number of consumers is zero.

In the case of F0, for the forwarder to send a similar
interest twice, by Alg. 2 lines 5 – 7, it must receive the
interest again from an existing predecessor. This con-
tradicts the premise that consumers do not retransmit.
Therefore, a forwarder that services only consumers will
only forward one Interest.

Only first Interest from
a new predecessor for
existing PIT entry is
aggregated.

FIB hop count must not
exceed the
decremented HopLimit
(Alg 1, Line 7)

10

CCNx 1.0 Interest Aggregation — 4/7

Algorithm 3 FIB Lookup

1: function FIBLOOKUP(Predecessor P, Interest I)
2: Exclude FIB entries that point to P
3: NextHops LongestPrefixMatch(I)
4: for N 2 NextHops do
5: if I.HopLimit < N.HopCount then
6: Remove N from NextHops
7: end if
8: end for
9: Return NextHops

10: end function

Algorithm 4 Forward Interest

1: function FORWARDINTEREST(Predecessor P, Inter-
est I)

2: NextHops FIBLOOKUP(P, I)
3: if NextHops is not empty then
4: for N 2 NextHops do
5: I.HopLimit N.HopCount
6: Send I to N
7: end for
8: Return true
9: else

10: Send InterestReturn (NoRoute)
11: Return false
12: end if
13: end function

straightforward and described next. It must be execute
within specific handling of the Interest HopLimit so that
Interest loops will not repeat and not be confused with
Interest retransmissions.

The Interest aggregation algorithm, Alg. 2 is as fol-
lows. When an Interest is received from predecessor P ,
the node first checks to see if a PIT entry exists for the
Interest. if it does not, then the PIT entry is created and
the Interest is forwarded. If a PIT entry already exists
and predecessor P is already listed in the predecessor
set, then the Interest is a retransmission from that path.
In this case, the Interest is forwarded. If a PIT entry
already exists and predecessor P is not already listed in
the predecessor set, then P is added to the set and the
Interest is aggregated.

To prevent forwarding table loops – whether per-
manent or temporary – from being seen as Interest re-
transmissions, we need to apply a rule to Interest for-
warding that ensures the Interest HopLimit decreases
enough at each hop such that if it cycles around it can
no longer be forwarded down that same cycle. This
technique was first proposed in [4]. This is achieved in
Alg. 4 where the Interest HopLimit is set to be exactly the
node’s FIB table hop count distance to the destination.
Because the HopLimit must decrease by at least 1 each

hop and the FIB Lookup algorithm, Alg. 3, excludes next
hops that cannot be reached by the remaining HopLimit,
this technique prevents an Interest from repeating a cy-
cle.

3. Analysis

In this section, we prove each claim of the aggregation
algorithm in cases where there are no forwarding table
cycles. The next section will how that the same cycle
does not repeat, so these properties hold in those cases
too.

Theorem 1 (HopLimit Decrease) The HopLimit in an In-
terest decreases every remote hop.

Proof: An application is considered a sink or a source
only, so they are excluded and we only consider remote
hops. By the functionality of Alg. 1, lines 3 - 8, a node
will either drop an Interest with a 0 HopLimit on receive,
or it will decrement the HopLimit by one.

For the HopLimit to not decrease, it must remain the
same or increase. This means that a forwarder must ei-
ther not update the HopLimit when it forwards the inter-
est or update it with a larger value. Alg. 4 line 5 always
updates the HopLimit before forwarding an Interest, so
we only need to consider that case. The HopLimit is
updated to the HopCount of the specific next hop being
used. For the HopLimit to not decrease, the next hop’s
HopCount must be no smaller than the original Ho-
pLimit before decrement (Alg. 1, Line 7). Alg. 3, Line 5,
however, maintains the invariant that a FIB entry’s Hop-
Count must be less than or equal to the decremented
HopLimit. By contradiction of the invariant, the hop
limit must decrease by at least 1 every remote hop.

Theorem 2 (Aggregation Interests) Assuming each con-
sumer only sends one Interest, there are no losses, and there
do not exist any cycles in the forwarding tables, then the pro-
ducer receives at most one Interest per link no matter how
many consumers send Interests.

Proof: By the premise, the forwarding tables form a
DAG. Therefore, a forwarder can only receive an Inter-
est from a consumer or from a downstream forwarder.
This means that some forwarders will only service con-
sumers (F0), some will service a mix of consumers and
downstream forwarders (F1), and some will only service
downstream forwarders (F2). Note that F2 is a special
case of F1, where the number of consumers is zero.

In the case of F0, for the forwarder to send a similar
interest twice, by Alg. 2 lines 5 – 7, it must receive the
interest again from an existing predecessor. This con-
tradicts the premise that consumers do not retransmit.
Therefore, a forwarder that services only consumers will
only forward one Interest.

Interest output has
HopLimit set to the FIB’s
HopCount (which must
be less than the input
HopLimit, Alg 3 Line 5)

PROPERTY PROOFS

•  Not presented here, written up in paper submission.

•  Can sketch out the proofs in Q&A if you have specific
questions.

11

CYCLES

•  Use this topology for example.

•  Assumes each forwarder uses unequal cost multipath.

•  Numbers indicate the FIB HopCount of each successor.

•  Interest sent from consumer C towards producer P.

12

Z C V
15

10

9

W X

3

Y

5

L1 L2 L3

4

2

P
16

11 6

1

CYCLES

13

Z C V
15

10

9

W X

3

Y

5

L1 L2 L3

4

2

P
16

11 6

1

•  C-V-W-X-Z-P: The shortest path.
•  C-V-L1-V-W-X-Z-P: The cycle L1 is permissible because

the HopLimit will be 15 on entering the loop and 11 on
exiting the loop, so the successor W is feasible.

•  C-V-W-L2-W-X-Z-P: The cycle L2 is permissible because
the HopLimit will be 9 on entering the loop and 6 on
existing the loop, so the successor X is feasible.

•  C-V-L1-V-W-L2-W-X-Z-P: As in prior two cases.
•  C-V-W-X-Y-L3-Y-{}: The path via Y will terminate after

the first cycle because the HopLimit on exiting L3 will be
1 and Y has no successor with a feasible HopCount.

CONCLUSION

•  CCNx 1.0 Interest aggregation algorithm
– Does not use timers.

– Does not depend on the ARQ mechanism (nor does
the ARQ mechanism depend on the Interest
aggregation scheme).

•  Has desirable properties
– At most 1 interest forwarder if no retransmissions.

– At most 1 ContentObject downstream per link, even
with retransmissions (ignoring in-flight misses).

– Interest will not travel a cycle more than once.

14

