Data Collection and Analysis
At High Security Lab

Jérôme François, jerome.francois@inria.fr
Overview

Generalities and objectives
Objectives of the High Security Laboratory

A unique academic platform in France for
- Collecting and analyzing various security related data
- Hosting in a secure environment
- Providing point-of-presences in Internet for Security experiments
- Contained sensitive execution

To reach major research results
- Pro-active defense against malwares and new threats
- Large scale experimentation and studies, publications
- Implementation and distribution of tools and software
- Validate and distribute research results
Security of the LHS

Dedicated and isolated infrastructure
- Workspace separated and “isolated”
- Self-sufficient (electricity, air conditioning)
- Separated network
 - Can simulate a virtual Internet
- **DMZ for results dissemination and collaborations**

Enhanced security
- Different areas with different security levels
 - Office > Servers room > “Red room”
 - “Red room” completely isolated, meant to store and treat sensitive information
- Strengthened access control
 - Strong authentication (entry pass + biometry)
 - Armoured doors and windows, alarms, airlock...
Virtualized and Isolated Architecture
2
Network telescope
(Operational since 2008)
Network telescope objectives

Malicious code and binaries capture
- Vulnerabilities emulation
 - Avoid probes compromission and attacks propagation
- Malwares capture (binaries)
- Sandboxes and AV used to analyse and identify the malwares
- Collect all information regarding the attacks
 - Source IP, geographical location, server hosting the binary, preparations
- Zero-day attacks capture to define pro-active defenses

Network flows and traces capture
- Capture in PCAP and NetFlow of the attack traces
- Infection and propagation mechanisms analysis
- Objective
 - Definition of pro-active perimetric defenses
 - Block the attacks at their source
Network telescope

Large scale malwares and attacks traces collect

• Multi-provider architecture
 • 3 public ADSL (Orange, SFR, Free)
 • 1 SDSL 2Mbits with a /24 network

• Virtual and isolated architecture

• 3 distinct environments
 • Data collect
 • Data storage
 • Experimentations support
Network telescope v1

Large scale malwares and attacks traces collect using on low interaction honeypots

- Based on SurfNet IDS logging server (http://ids.surfnet.nl)
 - Data stored in a Postgresql DB + Web Interface (stats, maps...)
 - Attack information, geolocation, sandboxing, AV scans...
 - Up to 100 simultaneous honeypots
- Low interaction honeypots logging directly to the Postgresql DB via plugins
- Network traces
 - PCAP via custom scripts
 - NetFlow via fprobe + nfsen and FlowMon appliance
Honeypots and emulated services

Low interaction honeypots

- **25 instances** deployed (around 100 in the very first version)
- Dionaea
 - RPC/Netbios, HTTP, FTP/TFTP, SIP/VoIP, MSSQL
- Amun
 - Vulnerabilities emulated via python plugins
- Kippo
 - Brute-force SSH always works and access to minimalistic shell
 - Sessions and brute-force attempts are logged
- Leurrecom.org Honeypot project
 - Distributed honeypots project, hosting 2 probes
- Glastopf / Glaspot
 - WEB vulnerabilities
- Snort
 - Intrusion detection on the whole SDSL /24 IP range
- In the past
 - Nepenthes, Dionaea ancestor
 - Hali in collaboration with the University of Luxembourg, SSH honeypot like Kippo
Some numbers

Operational since the 09th of September 2008

Total (29/10/2014)
• 901 832 393 attacks
• 368 984 073 malicious attacks
• 38 878 269 malwares captured
• 301 013 unique binaries

Daily (on a 800 Kbit/s bandwidth)
• 500 000 attacks - 300 000 malicious
• 25 000 binaries captured

Network traces
• 15 To of PCAP traces
• 240 Go of NetFlow flows (v5 et v9)
• 6 Go of anonymized Tor flows
Limitations

Based on « old » technologies
• Database (very) slow
• Not scalable
• Outdated sensors integration (e.g. snort plugin)
• Difficult to integrate new data sources

Not originally designed for this kind of deployment
• Meant as a realtime distributed IDS sending alerts
• Not designed to collect and store data over a long period
• Not meant to deal with 100+ sensors
• Loss of information due to SQL schema

Need a new deployment based on modern technologies and solutions
Modern Honeypot Network - MHN

Centralized server and tools to manage honeypot networks
• Deploy and aggregate honeypots
• Designed for large and distributed honeypot networks
• Data stored in MongoDB
• Sensors log via HPFeeds
 • lightweight authenticated publish-subscribe protocol
 • supports arbitrary binary payloads
• Data normalized via Mnemosyne
 • Provides immutable persistence for hpfeeds
 • Normalization of data to enable sensor agnostic analysis
 • Expose the normalized data through a RESTful API
• Attacks stream visualized with Honeymap
 • Reads hpfeeds live stream
 • Displays GPS locations on a SVG world map
• http://threatstream.github.io/mhn/
MHN - Architecture

[Diagram showing MHN architecture with components such as Mnemosyne, hpfedds, Web Interface, honymap, WebApp, REST API, and honeypots including Kippo, Dionaea, Amun, Glastopf, Conpot, Snort, Thug, and Yours.]

[3rd Party Apps]
Honeypots and sensors

Low interaction honeypots and sensors
• 1 instance of each deployed in the current deployment
• Automated deployment via puppet
• Dionaea
 • RPC/Netbios, HTTP, FTP/TFTP, SIP/VoIP, MSSQL
• Amun
 • Vulnerabilities emulated via python plugins
• Kippo
 • Brute-force SSH always works and access to minimalistic shell
 • Sessions and brute-force attempts are logged
• Conpot
 • ICS/SCADA Honeypot
• Glastopf
 • WEB applications honeypot
• Snort + snort_hpfeeds
 • Intrusion detection on the whole SDSL /24 IP range
 • Collector for shipping snort alerts using hpfeeds
Honeypots and sensors

Candidates

• Thug
 • Low-interaction honeyclient aimed at mimicking the behavior of a web browser in order to detect and emulate malicious contents
 • Automatic (via blacklists or spams) and manual submissions (portal) of URLs

• Shockpot
 • WebApp Honeypot for detecting Shell Shock exploit attempts
 • Working, but no attacks yet (need to investigate)

• Wordpot
 • Wordpress honeypot which detects probes for plugins, themes, timthumb and other common files used to fingerprint a wordpress installation.

• p0f
 • Passive traffic fingerprinting

• Custom sensors
 • DNS, Mobile networks
MHN – Extended architecture

Makes possible the addition of new sensors or a geographical distribution of the honeypots
Dashboard

Easy to query and extend

- Implementation of a custom dashboard
 - Generic statistics
 - Takes into account the specificities of our deployment
- Integration of other services
 - AV scanning, sandboxing…
- From January 1st 2016 : 10,856,617 attacks, 770,755 binaries (974 unique)
Dashboard

Most targeted ports? From Where?

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>dest_port</td>
<td>445</td>
<td>8,390,086 (79.85%)</td>
</tr>
<tr>
<td>src_ip_geolocation.country</td>
<td>Luxembourg</td>
<td>860,215 (15.02%)</td>
</tr>
</tbody>
</table>
Dashboard

<table>
<thead>
<tr>
<th>password</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456</td>
<td>7320</td>
</tr>
<tr>
<td>!@</td>
<td>5470</td>
</tr>
<tr>
<td>password</td>
<td>3641</td>
</tr>
<tr>
<td>1234</td>
<td>2481</td>
</tr>
<tr>
<td>ubnt</td>
<td>2071</td>
</tr>
<tr>
<td>12345</td>
<td>1707</td>
</tr>
<tr>
<td>123</td>
<td>1673</td>
</tr>
<tr>
<td>1</td>
<td>1384</td>
</tr>
<tr>
<td>test</td>
<td>1375</td>
</tr>
<tr>
<td>1</td>
<td>1243</td>
</tr>
<tr>
<td>admin</td>
<td>1120</td>
</tr>
<tr>
<td>qwerty</td>
<td>1109</td>
</tr>
<tr>
<td>123qwe</td>
<td>1059</td>
</tr>
</tbody>
</table>

Geographic location of attacks

Most used SSH passwords
5

Beyond collected data

Security analytics
Flow analysis

Objective

• Profile applications regarding traffic patterns (malware vs benign)

• Aggregation of network traffic

 • Asai, H.; Fukuda, K.; Esaki, H., "Traffic causality graphs: Profiling network applications through temporal and spatial causality of flows," Teletraffic Congress (ITC), 2011

• Model

 • Vertices are flows and edges are the relations between them (not relations between hosts)

 • Four types of relation based on IP address and port numbers: communication, propagation, dynamic port, static port

 • + reduction rules: limit the number of edges
Flow analysis

Application on Android Applications

Facebook

Viber
Flow analysis

Frequent substructure mining and comparison
On this example, we rely on benign applications
→ It is necessary for research purposes

And it was based on Android logs

→ LHS is not only a telescope, we have and are continuously extending its capability to serve our research and the research of our partners (collecting new data, hosting new types of probes,)
Experimentations support

Experiments

• Vulnerabilities assessment
 • Fuzzing (KiF), VoIP (SecSIP, Risk management)
• Network monitoring
 • Pedophilia in P2P networks (KAD, Bittorrent)
 • I2P anonymous P2P networks
• Services monitoring
 • Realtime analysis of malicious DNS requests
• Protocols et network mechanisms
 • IPv6, Botnets...
 • e.g. NDPMon, IPv6 Neighbor Discovery Monitor

SCADA platform integration

• Simulate physical processes with automated control (PLC Siemens)
• Communication protocols between I/O and controllers analysis (protocol Profinet)
• Attacks scenarios identification, vulnerabilities assessment and counter-measures
Being more active!

New types of experiments

• Most of existing experiments relies on passively collected data
• Doing active security measurement on Internet
 • Ethical and legal issues
 • → we have a special committee at Inria

• First really active experiment : IPV4 scanning
 • Industrial system exposition
 • Optimizing Internet Scanning for Assessing Industrial Systems Exposure, Jérôme François, Abdelkader Lahmadi Valentin Giannini, Damien Cupif, Frederic Beck and Bertrand Wallrich,, 7th International Workshop on TRaffic Analysis and Characterization, 2016

We observe our own scan and the other ones
→ Profiling and correlation
Still observing the Internet... but with larger scope

Darknet
- Actually also known as a telescope, sinkhole
- A large subnetwork which is announced over Internet but with no host
- Input traffic only
- Useful to observe large phenomenons: DDoS, scan, botnets
- In cooperation with NICT, Japan: data sharing and visualisation tools
5

Conclusion
Current and future work
Conclusion

• Server to store and analyze various large datasets

• Next platform updates
 • Full platform upgrade and new security services
 • High-interaction / active honeypots

• Dissemination / dataset sharing
 • Anonymize the traces / remove private information
 • Correlate the various information captured and offer full attack packages

• Distribute the sensors
 • Provide a secure platform for data storage and sharing
 • deploy sensors in partners networks, Raspberry Pi (or equivalent)
Thank you for your attention

More detail about our activities?
Access data?
Join our team (PhD, engineer,...)?

Contact us!

jerome.francois@inria.fr