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Service Classification in 5G Networks* – Motivation & Objectives

 Motivation

– Existence of diverse vertical/services with different requirements in terms of  QoS & capacity:

 Mobile Broadband (MBB)

 Massive Machine Type Communications (MTC)

 Mission Critical Communications (MCC) 

 Broadcast/Multicast Services (BMS)

 Vehicular to X (V2X)

– 5G system management meet the requirements resulting from a large variety of services 
to be provided simultaneously optimizing the network in order to be resource and energy 
efficient

– Prioritization of services and efficient allocation of resources  need for automated service 
classification schemes

 Our approach: use of supervised ML techniques (classification) 

 Goal: Accurate identification of  services to promote an efficient network tuning 
(optimal assignment of resources to satisfy the diverse QoS requirements)

*[Investigated under the framework of FANTASTIC-5G project, H2020 G.A.671660, 
http://fantastic5g.eu/]
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Service Classification in 5G Networks – ML approach

 MBB  diverse services (file downloading, streaming)  usually larger packets

 MMC  periodic communication (inter-arrival time), small packet size

 MCC  usually small packets (except P2P communications)

 BMS  larger packets, multicast/broadcast communication (not individual 
destination) 

 V2X (V2V or V2I)  high speed of nodes & combination with 4 others services
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Service Classification in 5G Networks – ML approach
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Classification
• Use of predefined classes of training instances
• 3 phases: training, cross-validation, application of classifier
• Goal: from the training dataset , find a function f(x) of the input features that best 

predicts the outcome of the output class y for any new unseen values of x
• Algorithms for investigation : Decision Trees, Naïve Bayes classification algorithms, 

Support Vector Machine (SVM), Random Forest 



Service Classification in 5G Networks – ML approach
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Service

Classification 
Result

FN: % of members of class MMC incorrectly 
classified as not belonging to this class
FP: % of members of class MMC incorrectly 
classified as belonging to this class
TP: % of members of class MMC correctly 
classified as belonging to this class
TN: % of members of class MMC correctly 
classified as not belonging to this class

• Use of traditional evaluation metrics (e.g. accuracy, precision, recall) 
• Analysis of the tradeoff between metrics (ROC curve)
• Optimization of metrics depending on the service (e.g. high values of Recall for 

MCC services)
• Definition of customized evaluation metric depending on the service



QoS provision and capacity expansions*- Extended DSA/ RRM

Extensions to Dynamic Spectrum Access and RRM 

 Machine learning and prediction based solution to a complex problem

 Involving 5G services and KPIs

 Leveraging on various licensing schemes, allocation possibilities, wide range 
of spectrum

 Handling a wide range of mobility cases

 Leading to automated and robust solutions

 Functionality partitioned between MAC and management layers

*[Investigated under the framework of SPEED-5G project, H2020 G.A.: 671705, https://speed-5g.eu/]7



QoS provision and capacity expansions - Predictive RRM in 
environments with high-mobility
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Mobile network state characterization & prediction –
Motivation & Objectives

 Motivation

– Diverse and complex actions (addition/removal of TRXs, transition from 2G3G4G 
features etc) take place in a real-world mobile network 

– Online optimization of network performance  automated analysis of each action’s impact 
to the network KPIs (customized to the specific network characteristics)

 Our approach:

– Impact analysis of resource allocation actions using unsupervised ML techniques (clustering 
approach)

– Prediction of network traffic/quality metrics using supervised ML techniques

 Objectives:

– Identification of resource allocation actions that result in ameliorated/ deteriorated 
network performance

– Prediction of future network KPIs considering that a specific resource allocation action will 
take place
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Mobile network state characterization & prediction – ML 
approach

 Impact Analysis of resource allocation actions using clustering mechanisms:

– Input of ML mechanism: network traffic/quality data of cells that affected by these actions

– ML mechanism: Clustering (k-Means)

– Output of ML mechanism: groups of cells where the cells in the same group (called a 
cluster) are more similar to each other than to those in other groups
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x-axis (silhouette coefficient values) : 
separation distance between the 

resulting clusters; how unsimilar each 
cell in one cluster is to cells in the 

neighboring clusters 



Mobile network state characterization & prediction – ML 
approach

11

 Impact Analysis of resource allocation actions using clustering mechanisms:

– Indicative clustering results (centroids representation) for traffic data of cells in a specific 
region

– Input data: Voice traffic data during one month period

– Ouput data: 4 clusters of cells (Low/Average/High/Very High Performance)



Mobile network state characterization & prediction – ML 
approach

 Prediction of network traffic/quality metrics using supervised ML techniques 

– Input of ML mechanism: network traffic/quality data of cells that affected by these actions

– ML mechanism: Time series prediction mechanisms (SVM, Neural Networks etc)

– Output of ML mechanism:  predicted  future values of traffic/quality metrics for specific 
cells using past traffic/quality data

 Next steps: 

– Use of accurate evaluation metrics for time series prediction 

– Analysis of the tradeoff between metrics depending on the KPIs 
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Conclusion - Next steps

 Development of automation mechanisms based on machine learning for:

– Service Classification in 5G networks

– QoS provision in 5G networks

– Mobile network state characterization

 Evaluation of service classification techniques for 5G networks 

– Definition/Selection of evaluation metrics

 Evaluation of predictive mechanisms in a high mobility scenario

– Impact analysis of high mobility characteristics in prediction model

 Evaluation of predictive mechanisms for real-world mobile network scenario

– Selection of adequate evaluation metrics

13



Thank You!
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For details you can visit:
http://tns.ds.unipi.gr
http://incelligent.net
http://wings-ict-solutions.eu
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QoS provision and capacity expansion: 
Speed-5G

 SPEED-5G intends to break spectrum 
and technology silos for optimal 
service provisioning and quality of 
experience

 Challenge on how to break the 
technological silos in a more flexible 
way in the longer term by exploiting 
and improving advanced flexible 
wireless technologies

 Improving autonomous management 
of small cells in dense scenarios 
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Service Classification in 5G Networks: FANTASTIC-5G

 FANTASTIC-5G aims to develop a new multi-service Air Interface (AI) for below 6 GHz 
through a modular design

 Key characteristics of the new interface: 

– flexibility, scalability, versatility, efficiency and future-proofness

 Development of the technical AI components and integration an overall AI framework 
where adaptation to various sources of heterogeneity will be accomplished 
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