NMLRG #3 meeting in Athens with EuCNC 2016

"Mobile network state characterization and prediction"

P.Demestichas ⁽¹⁾, S. Vassaki⁽²⁾, A.Georgakopoulos⁽²⁾

(1) University of Piraeus(2) Incelligent, www.incelligent.net

June 2016

Outline

• Service classification in 5G networks

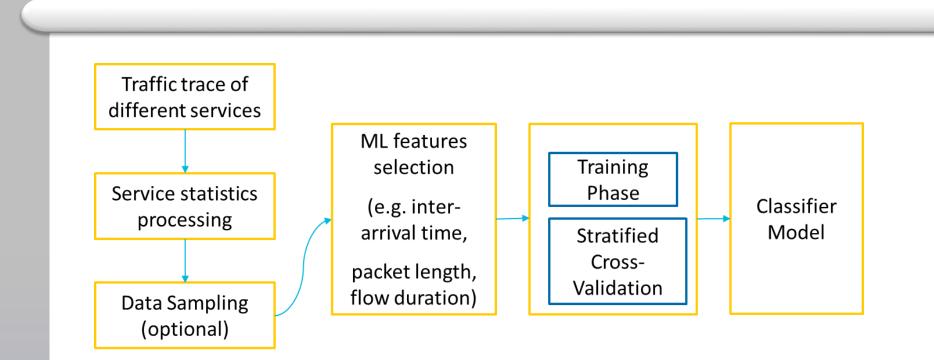
- Motivation/Objectives
- Considered approach using supervised ML techniques
- QoS provision and capacity expansion in 5G networks
 - Extended Dynamic Spectrum Access (DSA)
 - Predictive RRM in environments with high-mobility
- Mobile network state characterization & prediction
 - Motivation/Objectives
 - Considered approach using unsupervised & supervised ML techniques
 - Results
- Conclusions & Next steps

Service Classification in 5G Networks^{*} – Motivation & Objectives

Motivation

- Existence of diverse vertical/services with different requirements in terms of QoS & capacity:
 - Mobile Broadband (MBB)
 - > Massive Machine Type Communications (MTC)
 - > Mission Critical Communications (MCC)
 - > Broadcast/Multicast Services (BMS)
 - > Vehicular to X (V2X)
- 5G system management → meet the requirements resulting from a large variety of services to be provided simultaneously optimizing the network in order to be resource and energy efficient
- Prioritization of services and efficient allocation of resources → need for automated service classification schemes
- Our approach: use of supervised ML techniques (classification)
- **Goal**: Accurate identification of services to promote an efficient network tuning (optimal assignment of resources to satisfy the diverse QoS requirements)

*[Investigated under the framework of FANTASTIC-5G project, H2020 G.A.671660, http://fantastic5g.eu/]


Service Classification in 5G Networks – ML approach

- MBB \rightarrow diverse services (file downloading, streaming) usually larger packets
- MMC \rightarrow periodic communication (inter-arrival time), small packet size
- MCC → usually small packets (except P2P communications)
- BMS → larger packets, multicast/broadcast communication (not individual destination)
- V2X (V2V or V2I) \rightarrow high speed of nodes & combination with 4 others services

Service Parameter	MBB (Video streaming)	ммс	мсс	BMS	V2X
Packet length	Usually large	Small	Small	Medium	Depends on other characteristics
Statistics of Packet length (e.g. std)	Medium	Very small	Very small	Medium-Large	Depends on other characteristics
Packet inter- arrival time	Non periodic	Periodic	Non periodic (burst effect)	Non periodic	Usually non periodic
Statistics of Packet Inter-arrival time	Medium-Large	Very small	Large	Medium	Medium
Flow Direction	DL: large packets UL:small packets	UL	UL	DL	UL/DL
Flow length	Large	Small	Small	Medium	Small-Medium
Statistics of flow length (std)	Small-Medium	Small	Small	Medium	Medium
Mobility	Average	Low	Low	Low-Average	High

4

Service Classification in 5G Networks – ML approach

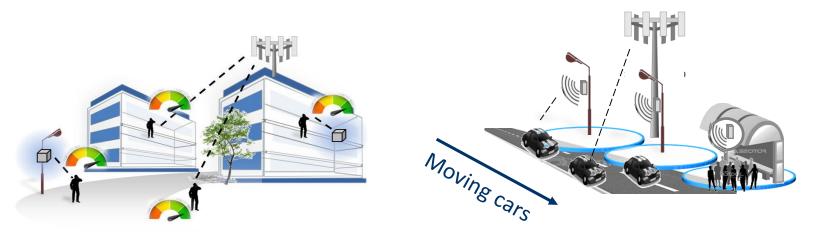
Classification

- Use of predefined classes of training instances
- 3 phases: training, cross-validation, application of classifier
- Goal: from the training dataset , find a function f(x) of the input features that best predicts the outcome of the output class y for any new unseen values of x
- Algorithms for investigation : Decision Trees, Naïve Bayes classification algorithms, Support Vector Machine (SVM), Random Forest

Classification Service Result	ММС	Other services	
ММС	ТР	FN	
Other services	FP	TN	

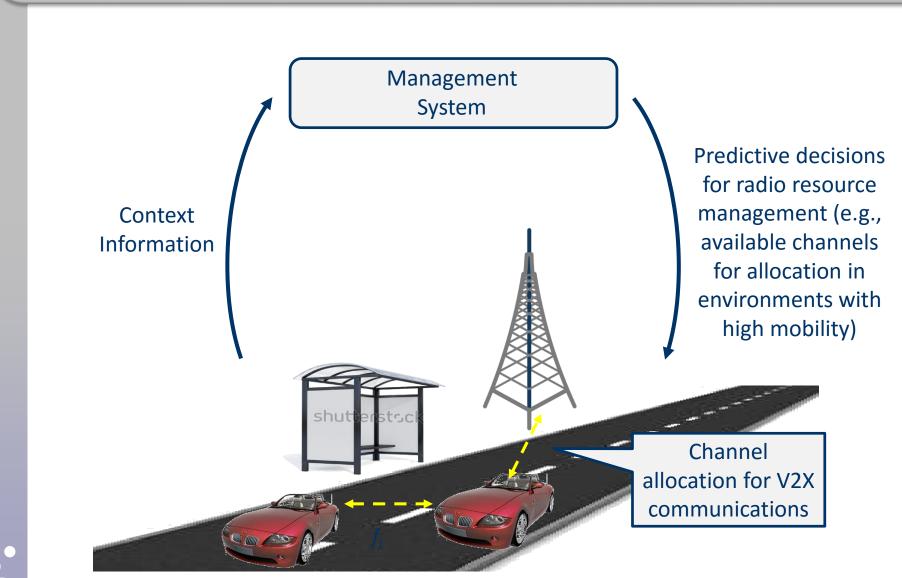
FN: % of members of class MMC incorrectly classified as not belonging to this class
FP: % of members of class MMC incorrectly classified as belonging to this class
TP: % of members of class MMC correctly classified as belonging to this class
TN: % of members of class MMC correctly classified as not belonging to this class

- Use of traditional evaluation metrics (e.g. accuracy, precision, recall)
- Analysis of the tradeoff between metrics (ROC curve)
- Optimization of metrics depending on the service (e.g. high values of Recall for MCC services)
- Definition of customized evaluation metric depending on the service


QoS provision and capacity expansions^{*}- Extended DSA/ RRM

Extensions to Dynamic Spectrum Access and RRM

- Machine learning and prediction based solution to a complex problem
- Involving 5G services and KPIs


7

- Leveraging on various licensing schemes, allocation possibilities, wide range of spectrum
- Handling a wide range of mobility cases
- Leading to automated and robust solutions
- Functionality partitioned between MAC and management layers

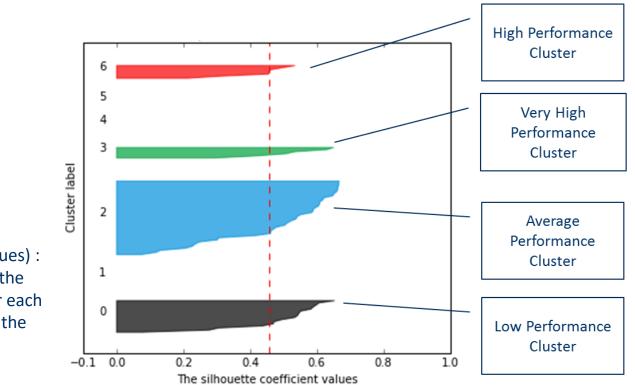
*[Investigated under the framework of SPEED-5G project, H2020 G.A.: 671705, https://speed-5g.eu/]

QoS provision and capacity expansions - Predictive RRM in environments with high-mobility

Mobile network state characterization & prediction – Motivation & Objectives

- Motivation
 - Diverse and complex actions (addition/removal of TRXs, transition from 2G→3G→4G features etc) take place in a real-world mobile network
 - Online optimization of network performance → automated analysis of each action's impact to the network KPIs (customized to the specific network characteristics)

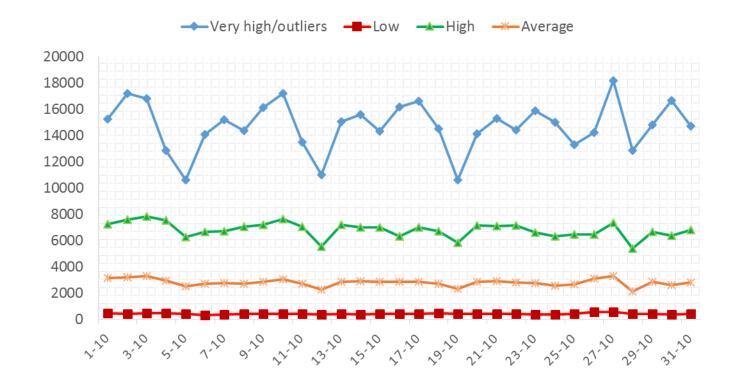
• Our approach:


- Impact analysis of resource allocation actions using unsupervised ML techniques (clustering approach)
- Prediction of network traffic/quality metrics using supervised ML techniques

• Objectives:

- Identification of resource allocation actions that result in ameliorated/ deteriorated network performance
- Prediction of future network KPIs considering that a specific resource allocation action will take place

Mobile network state characterization & prediction – ML approach


- Impact Analysis of resource allocation actions using clustering mechanisms:
 - Input of ML mechanism: network traffic/quality data of cells that affected by these actions
 - ML mechanism: Clustering (k-Means)
 - Output of ML mechanism: groups of cells where the cells in the same group (called a cluster) are more similar to each other than to those in other groups

x-axis (silhouette coefficient values) : separation distance between the resulting clusters; how unsimilar each cell in one cluster is to cells in the neighboring clusters

Mobile network state characterization & prediction – ML approach

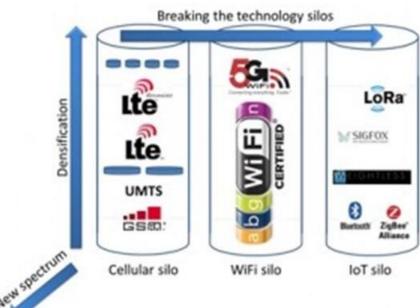
- Impact Analysis of resource allocation actions using clustering mechanisms:
 - Indicative clustering results (centroids representation) for traffic data of cells in a specific region
 - Input data: Voice traffic data during one month period
 - Ouput data: 4 clusters of cells (Low/Average/High/Very High Performance)

Mobile network state characterization & prediction – ML approach

- Prediction of network traffic/quality metrics using supervised ML techniques
 - Input of ML mechanism: network traffic/quality data of cells that affected by these actions
 - ML mechanism: Time series prediction mechanisms (SVM, Neural Networks etc)
 - Output of ML mechanism: predicted future values of traffic/quality metrics for specific cells using past traffic/quality data
- Next steps:
 - Use of accurate evaluation metrics for time series prediction
 - Analysis of the tradeoff between metrics depending on the KPIs

Conclusion - Next steps

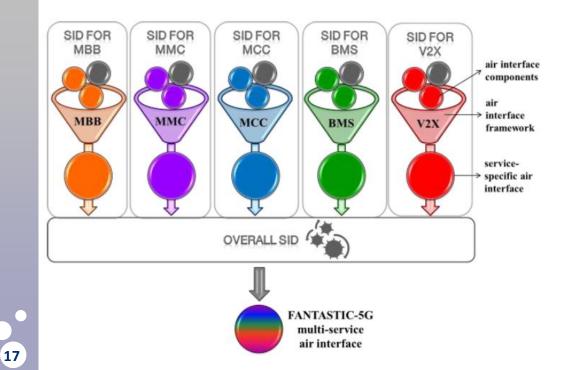
- Development of automation mechanisms based on machine learning for:
 - Service Classification in 5G networks
 - QoS provision in 5G networks
 - Mobile network state characterization
- Evaluation of service classification techniques for 5G networks
 - Definition/Selection of evaluation metrics
- Evaluation of predictive mechanisms in a high mobility scenario
 - Impact analysis of high mobility characteristics in prediction model
- Evaluation of predictive mechanisms for real-world mobile network scenario
 - Selection of adequate evaluation metrics


Thank You!

14

For details you can visit: http://tns.ds.unipi.gr http://incelligent.net http://wings-ict-solutions.eu

Backup Slides


QoS provision and capacity expansion: Speed-5G

- SPEED-5G intends to break spectrum and technology silos for optimal service provisioning and quality of experience
- Challenge on how to break the technological silos in a more flexible way in the longer term by exploiting and improving advanced flexible wireless technologies
- Improving autonomous management of small cells in dense scenarios

Service Classification in 5G Networks: FANTASTIC-5G

- FANTASTIC-5G aims to develop a new multi-service Air Interface (AI) for below 6 GHz through a modular design
- Key characteristics of the new interface:
 - flexibility, scalability, versatility, efficiency and future-proofness
- Development of the technical AI components and integration an overall AI framework where adaptation to various sources of heterogeneity will be accomplished

