
	  
Knowledge-‐Defined	  Networking	  
Learning	  how	  to	  route	  
Albert	  Cabellos	  (UPC/BarcelonaTech,	  Spain)	  
albert.cabellos@gmail.com	  
	  

EUCNC	  
Athens,	  June	  2016	  



Thanks	  to:	  
•  Prof.	  Jean	  Walrand	  
•  Fabio	  Maino,	  John	  Evans,	  Chris	  Cassar,	  Hugo	  

Latapie,	  	  
•  Shyam	  Parekh	  
•  David	  Meyer	  
•  Sharon	  Barkai	  
•  Mike	  J	  HibbeM,	  Giovani	  Estrada	  
•  Albert	  Mestres,	  Josep	  Carner,	  Alberto	  

Rodriguez,	  Eduard	  Alarcón,	  Pere	  Barlet	  
•  Victor	  Muntés,	  Marc	  Sole	  

2	  



ContextualizaWon	  
Applying	  Machine	  Learning	  to	  Networks	  

3	  



D.	  Clark	  (MIT)	  “A	  Knowledge	  Plane	  for	  the	  
Internet”,	  2003	  

4	  

Clark, David D., et al. "A knowledge plane for the internet." Proceedings of 
the 2003 conference on Applications, technologies, architectures, and 
protocols for computer communications. ACM, 2003.	  

“we	  propose	  a	  new	  construct,	  the	  Knowledge	  
Plane,	  a	  pervasive	  system	  within	  the	  network	  
that	  builds	  and	  maintains	  high-‐level	  models	  of	  
what	  the	  network	  is	  supposed	  to	  do”	  
	  
“The	  knowledge	  plane	  is	  novel	  in	  its	  reliance	  
on	  the	  tools	  of	  AI	  and	  cogniWve	  systems.”	  



Why	  we	  are	  not	  there?	  
•  TradiWonally	  networks	  have	  been	  distributed	  systems	  

–  ParWal	  view	  and	  control	  	  
•  Beyond	  programmability,	  SDN	  provides	  centralizaCon:	  

–  Full	  control	  over	  the	  network	  
•  Data-‐Plane	  nodes	  are	  now	  equipped	  with	  compuWng	  
and	  storage	  capabiliWes	  
–  Network	  telemetry	  and	  analyWcs	  
–  Rich	  view	  of	  the	  network	  

5	  



Knowledge-‐Defined	  Networking	  

•  Apply	  ML	  techniques	  to	  Networking:	  
–  Control	  (fast	  dynamics)	  

•  E.g,	  rouWng,	  resource	  allocaWon	  (NFV/SFC),	  PCE,	  opWmizaWon,	  
congesWon	  detecWon	  

– Management	  (slow	  dynamics)	  
•  E.g.,	  network	  planning,	  resource	  management,	  load	  esWmaWon	  

–  RecommendaWon	  mechanisms	  
•  Towards	  self-‐driving	  networks	  
•  Knowledge-‐Defined	  Networking	  paradigm	  

6	  



Knowledge-‐Defined	  Networking	  Paradigm	  

7	  

2

Fig. 1. The Knowledge plane

shows an overview of the KDN architecture and its functional
planes.

The Data Plane is responsible for storing, forwarding and
processing data packets. In SDN networks, data plane devices
are typically white-boxes composed of line-rate programmable
forwarding hardware. They operate unaware of the rest of
the network and rely on the other planes to populate their
forwarding tables and update their configuration.

The Control Plane exchanges operational state in order
to update the data plane matching and processing rules. On
an SDN network, this role is assigned to the –logically
centralized– SDN controller that programs SDN data-plane
forwarding elements via a southbound interface, typically
using an imperative language. While the data-plane operates
at packet time-scales, the control-plane is slower and typically
operates at flow time-scales.

The Management Plane ensures the correct operation and
performance of the network in the long term. It defines the
network topology and handles the provision and configuration
of network devices. In SDN networks this is usually handled
also by the SDN controller. The management plane is also
responsible of monitoring the network to provide critical
network analytics. For this it collects telemetry information
from the data plane while keeping an historical record of
network state and events. The management plane is orthogonal
to the control and data planes and typically operates at a slower
time-scale.

The Knowledge Plane, as originally defined by Clark, is
redefined in this paper under the terms of SDN. In that
sense, we adapt Clarks definition of the KP: the heart of the
knowledge plane is its ability to integrate behavioral models
and reasoning processes into an SDN network. The KP takes
advantage of the Control and Management planes to obtain
a full view and control over the network. It is responsible
of learning the behavior of the network and, in some cases,
automatically operate the network accordingly. Fundamentally,
the KP processes the network analytics collected by the man-

Intent 
language

Forwarding elements

SDN 
controller

Analytics 
platform

Machine 
learning

Human decisionKnowledge

Automatic decision

Fig. 2. KDN operational loop

agement plane, transforms them into knowledge via machine
learning, and uses that knowledge to take decisions (either
automatically or through human intervention). Parsing the
information and learning from it is typically a slow process,
however using such knowledge automatically can be done at
a time-scales close to the control and management planes.

III. KNOWLEDGE-DEFINED NETWORKING

The Knowledge-Defined Networking architecture operates
by means of a loop -in a similar way to control systems– to
provide automation, recommendation, optimization, validation
and estimation. Fig. 2 shows the main steps of such loop, in
what follows we describe them in detail.

a) Forwarding Elements ! Analytics Platform: The Ana-
lytics Platform aims to gather as much information as possible
to offer a complete view of the network. To that end, it
monitors in real time the Data Plane elements while they for-
ward packets in order to access fine-grain traffic information.
Besides, it queries the state at the SDN controller to obtain
control and management state. The analytics platform relies
on protocols such NETCONF2 (to obtain the configuration
and operational data from network devices) and NetFlow3 (to
extract traffic information and samples). The most relevant data
collected by the Analytics Platform is summarized below.
• Packet-level data and flow-level data: this includes DPI

information, flow granularity data and relevant traffic
features.

• Network state: This includes the logical and physical
configuration of the network as well as the network
topology.

• Service-level telemetry: In some scenarios the analytics
platform will also monitor and store service-level infor-
mation (e.g, load of the services, QoE, etc), this is rele-
vant to learn the service-related behavior and its relation
with network performance, load and configuration.

2RFC 6241
3RFC 3954



Benefits	  of	  KDN	  

8	  

•  RecommendaWon	  
•  OpWmizaWon	  

•  Hidden	  InformaWon	  
•  Complex	  systems	  

•  EsWmaWon	  
•  Performance/Cost	  

•  ValidaWon	  
•  Performance/Cost	  

•  Knowledge	  discovery	  

2

Fig. 1. The Knowledge plane

shows an overview of the KDN architecture and its functional
planes.

The Data Plane is responsible for storing, forwarding and
processing data packets. In SDN networks, data plane devices
are typically white-boxes composed of line-rate programmable
forwarding hardware. They operate unaware of the rest of
the network and rely on the other planes to populate their
forwarding tables and update their configuration.

The Control Plane exchanges operational state in order
to update the data plane matching and processing rules. On
an SDN network, this role is assigned to the –logically
centralized– SDN controller that programs SDN data-plane
forwarding elements via a southbound interface, typically
using an imperative language. While the data-plane operates
at packet time-scales, the control-plane is slower and typically
operates at flow time-scales.

The Management Plane ensures the correct operation and
performance of the network in the long term. It defines the
network topology and handles the provision and configuration
of network devices. In SDN networks this is usually handled
also by the SDN controller. The management plane is also
responsible of monitoring the network to provide critical
network analytics. For this it collects telemetry information
from the data plane while keeping an historical record of
network state and events. The management plane is orthogonal
to the control and data planes and typically operates at a slower
time-scale.

The Knowledge Plane, as originally defined by Clark, is
redefined in this paper under the terms of SDN. In that
sense, we adapt Clarks definition of the KP: the heart of the
knowledge plane is its ability to integrate behavioral models
and reasoning processes into an SDN network. The KP takes
advantage of the Control and Management planes to obtain
a full view and control over the network. It is responsible
of learning the behavior of the network and, in some cases,
automatically operate the network accordingly. Fundamentally,
the KP processes the network analytics collected by the man-

Intent 
language

Forwarding elements

SDN 
controller

Analytics 
platform

Machine 
learning

Human decisionKnowledge

Automatic decision

Fig. 2. KDN operational loop

agement plane, transforms them into knowledge via machine
learning, and uses that knowledge to take decisions (either
automatically or through human intervention). Parsing the
information and learning from it is typically a slow process,
however using such knowledge automatically can be done at
a time-scales close to the control and management planes.

III. KNOWLEDGE-DEFINED NETWORKING

The Knowledge-Defined Networking architecture operates
by means of a loop -in a similar way to control systems– to
provide automation, recommendation, optimization, validation
and estimation. Fig. 2 shows the main steps of such loop, in
what follows we describe them in detail.

a) Forwarding Elements ! Analytics Platform: The Ana-
lytics Platform aims to gather as much information as possible
to offer a complete view of the network. To that end, it
monitors in real time the Data Plane elements while they for-
ward packets in order to access fine-grain traffic information.
Besides, it queries the state at the SDN controller to obtain
control and management state. The analytics platform relies
on protocols such NETCONF2 (to obtain the configuration
and operational data from network devices) and NetFlow3 (to
extract traffic information and samples). The most relevant data
collected by the Analytics Platform is summarized below.
• Packet-level data and flow-level data: this includes DPI

information, flow granularity data and relevant traffic
features.

• Network state: This includes the logical and physical
configuration of the network as well as the network
topology.

• Service-level telemetry: In some scenarios the analytics
platform will also monitor and store service-level infor-
mation (e.g, load of the services, QoE, etc), this is rele-
vant to learn the service-related behavior and its relation
with network performance, load and configuration.

2RFC 6241
3RFC 3954



MoWvataWon	  
Can	  we	  learn	  how	  to	  route?	  

9	  



Can	  we	  learn	  how	  to	  route?	  

10	  

	  
–  Which	  egress/ingress	  links	  should	  overlay	  routers	  use?	  	  E.g.	  A	  or	  B	  and	  C	  or	  D?	  

•  Underlay	  is	  assumed	  that	  has	  an	  arbitrary	  constant	  rouWng	  
•  Underlay	  is	  assumed	  as	  hidden	  and	  out-‐of-‐control	  
•  Overlay	  protocol	  is	  assumed	  to	  be	  able	  to	  choose	  egress	  and	  ingress	  links,	  we	  refer	  

to	  this	  as	  rouWng	  policy	  

–  Goal:	  Achieve	  overall	  minimum	  latency	  

Unknown	  undelay	  	  
network	  

A	  
B	  

C	  
D	  



Can	  we	  learn	  how	  to	  route?	  
•  Train	  

–  Ingress/Egress	  policy	  
–  Traffic	  (source,	  desWnaWon,	  bandwidth)	  
–  ResulWng	  performance:	  delay	  

•  Generate	  a	  model	  
–  	  f(ingress/egress	  policy,	  traffic)	  =	  delay	  

•  OpWmize	  
–  Pick,	  for	  a	  given	  traffic	  matrix	  and	  for	  

each	  blue	  node,	  an	  ingress/egress	  link	  
configuraWon	  that	  minimized	  the	  delay	  

11	  

SDN	  Controller	  

Train	  

Model	  

OpWmize	  



Experimental	  Setup	  

12	  



Is	  it	  feasible	  to	  learn	  how	  to	  route?	  
Methodology	  

•  Understand	  the	  accuracy	  of	  ML-‐based	  regressors	  under	  
various	  network	  parameters	  

•  Train	  a	  set	  of	  ML-‐based	  esWmators	  (NN,	  SVM,	  etc)	  
–  f(ingress/egress	  policy,	  traffic)=delay	  
–  Try	  to	  find	  the	  opWmal	  performance	  of	  the	  regressors	  (search	  
over	  meta-‐parameters)	  

–  Datasets:	  10.000	  samples	  
–  Cross-‐validaWon	  (60%	  training,	  40%	  evaluaWon)	  

•  Evaluate	  its	  accuracy	  when	  varying	  different	  network	  
parametrs	  	  
–  Size,	  acWve	  staWons,	  rouWng,	  etc	  

13	  



Training	  Set:	  Packet-‐Level	  Simulator:	  Omnet++	  
	  

14	  

Parameter	   VariaCon	  

Topology	   Star,	  Ring	  and	  Scale-‐free	  
	  

Traffic	  distribuCon	  
	  

Poisson,	  Binomial,	  Uniform	  and	  DeterminisWc	  
	  

Size	  of	  the	  network	  
	  

3-‐15	  

AcCve	  StaCons	  
	  

3-‐15	  

Underlay	  rouCng	  policy	  
	  

10	  (random	  variaWons	  of	  traffic	  sent	  through	  each	  
path)	  	  
	  

Link	  SaturaCon	  
	  

4	  levels,	  level	  3	  means	  that	  at	  least	  1	  link	  is	  saturated	  



Regressors	  
•  Single-‐layer	  Neural	  Network	  

– We	  iterate	  over	  sizes:	  3-‐200	  
–  AcWvaWon	  funcWons:	  sigmoid,	  recWfied	  linear	  unit,	  
hypervolic	  tangent	  

•  Polynomial	  regression	  
–  Linear	  search	  of	  the	  degree:	  1-‐20	  

•  Support	  Vector	  Machine	  
–  C	  parameter	  randomly	  chosen	  between	  10-‐6	  and	  100	  
–  Kernels:	  Polynomial,	  Radial	  Basis	  FuncWon	  and	  LogisWc	  

15	  



Experimental	  Results	  

16	  



MSE	  vs.	  Training	  set	  size	  
(scale-‐free,	  poisson	  traffic,	  9	  acWve	  staWons)	  	  

17	  

policies will be studied, obtained after the random varia-
tion of the percentatge that is sent through each possible
path.

• Link saturation (S). We set 4 levels, being the 3rd
level the point in which links should start to saturate on
average, or in other words, packets should start to be
discarded.

To study the influence of each of the precedent parameters in
the fitting capacity of the models, we iterate over the stated
values for every parameter while fixing the rest to their default
values. Those default values are: 15 stations (N), 3 active
stations (NAS), all traffics considered (NICT), shortest path
routing (R), and second level of saturation (S).

Finally, to evaluate the modeling capacity machine learning
offers when restricted to the stated problem, we not only
analyze the test error each estimator obtains, but also the
number of examples it requires to reach a certain error bound
and the time that is needed to train it.

III. EXPERIMENTAL RESULTS

In this section we show the results obtained after performing
the experiments as described in section II. It is not possible
to fit all the plots and tables in the available space, so
given the fact that most of the experiments show a similar
tendency and suggest the same conclusions we have decided
to restrict to a subset of them, ensuring they are sufficiently
representative. Any difference with respect to the rest of non-
depicted situations will be clearly outlined.

Figures 3a to 3e show the different generalization errors that
we obtain when varying the parameters stated in section II. In
this case the plots are restricted to Poisson services (exponen-
tially distributed packet lengths) and to the overlay-underlay
topology. At the same time, table III shows a summary of the
principal component analysis of some of the plotted situations.

On their behalf, figures 1 and 2 show the required number
of examples to reach a certain minimum or average validation
error for two very particular cases, which are:

• Case 1: Poisson services, overlay-underlay topology, 3
stations, all of them active, shortest path policy for
underlay nodes and low link saturation (Fig. 1).

• Case 2: Poisson services, overlay-underlay topology, 9
stations, all of them active, shortest path policy for
underlay nodes and low link saturation (Fig. 2).

Finally, tables I and II show the mean and minimum time
required for training the selected models in two particular
cases, the ones depicted in figures 1 and 2.

IV. DISCUSSIONS

The first conclusion the results suggest is that the error
observed in the plots is mostly caused by the variance of the
data (irreducible error) rather than due to an underfitting of the
models. This is important since it implies that the experimental
results can be used to infer properties from the networks we
are studying. Three main arguments support this statement:

• All three estimators achieve an almost-identical bound
(except in some specific points). This would be too
unlikely unless this value matched the optimal error.

Fig. 1: Minimum and average training error as a function of the
training set size, Poisson services, overlay-underlay topology,
3 stations

Fig. 2: Minimum and average training error as a function of the
training set size, Poisson services, overlay-underlay topology,
9 stations

• The training and test error are close enough to assume the
models don’t underfit nor overfit the data. An example of
this can be found while comparing fig. I and fig. II to fig.
3a.

• The increase of the generalization error when suppressing
input variables (see fig. 3e) can be intuitively explained
by the increase of variance contained in the corresponding
dimensions that have been suppressed, as table III shows.
In other words, the consonance of this two elements
suggests that the error is mostly caused by the variance
contained in the data, not by an underfitting of the model.

On its behalf, results in fig. I and fig. II suggest that the data
seems to be stationary, thus representative of the distribution
from which it has been generated. This implies that we can
discard an underfitting in the models due to an insufficient
data set. This conclusions can be inferred from the fact that



MSE	  vs.	  RouWng	  policy	  
(scale-‐free,	  poisson	  traffic,	  9	  acWve	  staWons)	  	  

18	  

(a) Error as a function of the number of stations (b) Error as a function of the number of active (transmitting) stations

(c) Error as a function of the saturation level (d) Error as a function of the routing policy

(e) Error as a function of stations considered when training the
models

Fig. 3: Error analysis, overlay-underlay topology, poisson services



MSE	  vs.	  Load	  
(scale-‐free,	  poisson	  traffic,	  9	  acWve	  staWons)	  	  

19	  

(a) Error as a function of the number of stations (b) Error as a function of the number of active (transmitting) stations

(c) Error as a function of the saturation level (d) Error as a function of the routing policy

(e) Error as a function of stations considered when training the
models

Fig. 3: Error analysis, overlay-underlay topology, poisson services

(a) Error as a function of the number of stations (b) Error as a function of the number of active (transmitting) stations

(c) Error as a function of the saturation level (d) Error as a function of the routing policy

(e) Error as a function of stations considered when training the
models

Fig. 3: Error analysis, overlay-underlay topology, poisson services



Conclusions	  &	  Future	  Work	  

20	  



Conclusions	  &	  Future	  Work	  
•  Results	  suggest	  that	  learning	  how	  to	  route	  is	  feasible	  

–  Low	  error	  for	  all	  three	  esWmators	  	  
–  All	  three	  esWmators	  converge	  to	  the	  (almost)	  same	  error	  
–  Polyinomial	  regressor	  (order	  2)	  is	  way	  faster	  to	  train.	  	  

•  Increased	  load	  in	  the	  network	  leads	  to	  larger	  esWmator	  error	  
–  This	  may	  be	  due	  to	  the	  higher	  randomness	  in	  the	  delays	  

•  This	  represents	  a	  new	  breed	  of	  network	  modeling	  
algorithms	  

•  Future	  work	  	  
–  Test	  with	  larger	  networks	  
–  How	  can	  we	  represent	  the	  topology?	  

	  

21	  



Thanks!!!	  
•  More	  informaWon	  about	  KDN:	  

–  Albert	  Mestres,	  Alberto	  Rodriguez-‐Natal,	  Josep	  Carner,	  Pere	  Barlet-‐Ros,	  Eduard	  Alarcón,	  
Marc	  Solé,	  Victor	  Muntés-‐Mulero,David	  Meyer,	  Sharon	  Barkai,	  Mike	  J	  HibbeM,	  Giovani	  
Estrada,	  Florin	  Coras,	  Vina	  Ermagan,	  Hugo	  Latapie,	  Chris	  Cassar,	  John	  Evans,	  Fabio	  
Maino,	  Jean	  Walrand	  and	  Albert	  Cabellos	  “Knowledge-‐Defined	  Networking”	  in	  
Arxiv.org	  (hTp://arxiv.org/pdf/1606.06222.pdf)	  

•  Contribute	  to	  the	  NML	  WG	  at	  IRTF	  
–  hTps://datatracker.ieX.org/rg/nmlrg/charter/	  

•  Have	  a	  dataset?	  Want	  to	  start	  training	  your	  neural-‐
network?	  
–  Public	  data-‐sets	  available	  at:	  hTp://knowledgedefinednetworking.org	  

22	  


