

From a World-Wide Web of Pages to a World-Wide Web of Things Interoperability for Connected Devices

n

Dave Raggett 16 March2016

The Internet of Things

n

Still very immature, but with massive potential

Lack of interoperability at the application level

• Data silos are holding back the potential

Open or closed system incentives?

- Closed systems: control and faster time to market
 - The speed advantage evaporates once tooling for open standards is available
- Open systems: reduced costs and greatly increased market size
 - Open standards give customers greater confidence in sustainability

Bridging the Silos

Isolated IoT products create data silos

- Vendors use fixed cloud address for devices to upload their data to
- Incompatible protocols, formats and data models

Silos hinder creation of services that combine different data

How to enable easy integration of data sources?

The Web is the framework that offers a unifying approach:

- For simplifying application development across many platforms
- For metadata as a basis for discovery, interoperability, and open markets of services

With thanks to Major Clanger

Many Potential IoT Application Areas

each evolving rich capabilities

1

Smart Manufacturing

Shift from mass production to tailored production

- Bespoke finished products to match unique needs
- Reduced time from design to delivery
- Flexible production systems to meet changing needs
- Open markets of services (customizable apps)

Smarter systems

- Importance of models and metadata
- Production planning
- Monitoring and optimisation
- Cost reduction
- Easier integration

The Web and W3C

fi

World Wide Web Consortium

Mission: lead the Web to its full potential

• The Web is the world's largest vendor-neutral distributed application platform

Founded by Sir Tim Berners-Lee, inventor of the Web

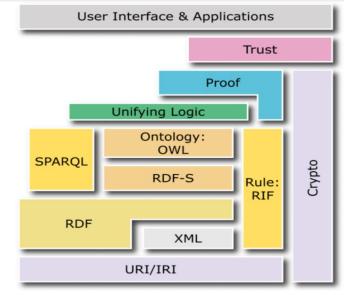
• 400+Members

n

• Member-funded international organisation

Develops standards for Web and semantic technologies

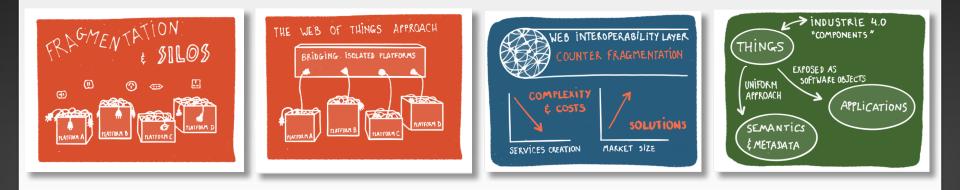
- HTML, CSS, scripting APIs, XML, SVG, VoiceXML, Semantic Web and Linked Data etc.
- Developer oriented, enabling cooperation between organisations with very different backgrounds
- W3C patent policy for royalty free standards
- W3C staff of engineers actively participating in standardisation
- Increasingly involved in verticals: Mobile, TV, Automotive, Digital publishing


Why is Semantics Important?

What is the relevance to digital automation?

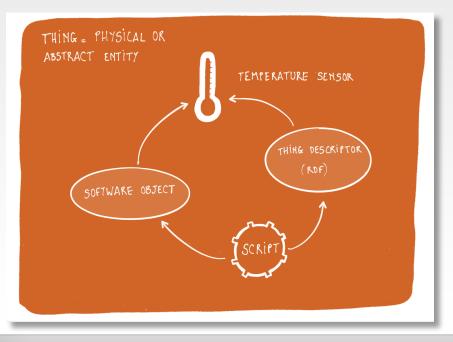
- Shared vocabularies for entities and their relationships
- Describing the software objects that stand for physical or abstract "things"
- When searching for services with a given semantics
- To facilitate the design of service compositions
- Optimal planning for flexible production of bespoke products

W3C Semantic Web Standards Stack


Web of Things Technology stack

1

Web of Things



The Web is fuelling a transition from costly monolithic software to open markets of apps

Things

Applications act on software objects that stand for things

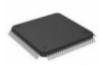
- Local "things"
- Remote "things

Rich descriptions for every "thing"

- Data models, semantics, metadata
- Ontologies that describe "things"

Things don't need to be connected

• Abstract entities and unconnected physical objects



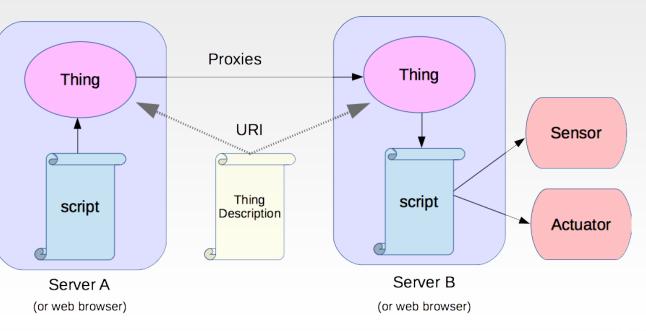
Scalability

Web of Things servers can be realised at many scales from microcontrollers to clouds

Micro-controller: resource constrained, IoT devices or gateways, CoAP, running behind firewall

Smart Phone: personal server for access to smart home and wearables

Cloud-Based: highly scalable server for many users, devices and working with big data



Distributed Web of Things

- Thing descriptions can be used to create proxies for a thing, allowing scripts to interact with a local proxy for a remote entity
- Scripts can run on servers or as part of Web pages in Web browser for human machine interface
- Thing topologies

• Peer to Peer, Peer to Peer via Cloud, Star, Device to Cloud, Star to Cloud

Distributed Intelligence

n

Taking a distributed approach to designing complex systems of systems, placing processing and storage where it is most needed

> The ability to upload scripts into web of things servers on different scales, and using different control languages

- Abstraction layers for sensing
 - Progressive stages of interpretation
 - Combining sensor data with other sources of information
 - Inferred events
 - Machine learning
 - Monitoring to check all is well
 - Reducing the burden on cloud based systems
- Abstraction layers for actuation
 - Progressively map high level intent to low level actuation
 - Synchronisation across clusters of devices
- Abstraction layers for control
 - Control links sensing to actuation
 - Implementing control at multiple levels of abstraction

Communications Stack – Clean separation of concerns

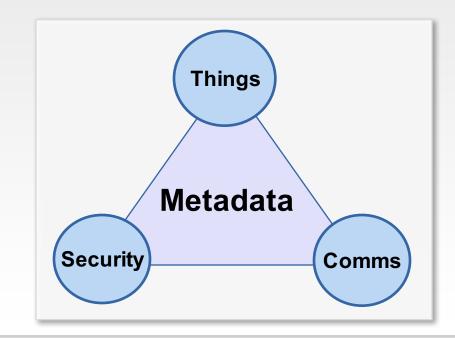
Application Developer (WoT focus)	Application	Scripts that define thing behaviour in terms of their properties, actions and events, using APIs for control of sensor and actuator hardware
	Things	Software objects that hold their state Abstract thing to thing messages Semantics and Metadata, Data models and Data
	Transfer	Bindings of abstract messages to mechanisms provided by each protocol, including choice of communication pattern, e.g. pull, push, pub-sub, peer to peer, etc.
Platform Developer (IoT focus)	Transport	REST based protocols, e.g. HTTP, CoAP Pub-Sub protocols, e.g. MQTT, XMPP Others, including non IP transports, e.g. Bluetooth
	Network	Underlying communication technology with support for exchange of simple messages (packets) Many technologies designed for different requirements

Metadata as key to Platform of Platforms

- Different platforms using different technology standards, different protocols and different data formats
- Web of Things as abstraction layer over these platforms
- Application logic decoupled from the underlying platforms
- Servers rely on rich metadata to communicate
- Encouraging re-use and the role of intermediaries
- Formal versus informal metadata

n

Horizontal and Vertical Metadata Vocabularies


Industry specific groups are in best position to define vocabularies for each vertical

W3C core metadata vocabularies used across application domains

One Level Deeper on Horizontal Metadata Core metadata applicable across application domains

Thing descriptions

- Links to thing semantics
- Data models and relationships between things
- Dependencies and version management
- Discovery and provisioning
- Bindings to APIs and protocols

Security related metadata

- Security practices
- Mutual authentication
- Access control
- Terms and conditions relationship to "Liability"
- Payments
- Trust and Identity Verification
- Privacy and Provenance
- Safety, Compliance and Resilience

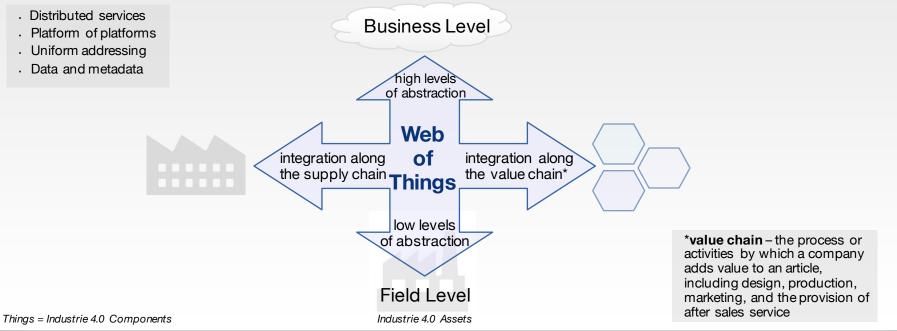
Communication-related metadata

- Protocols and ports
- Data formats and encodings
- Multiplexing and buffering of data
- Efficient use of protocols
- Devices that sleep most of the time

Data Models

- Core types, e.g. null, boolean, number, string, array, ...
- Things and streams as first class data types
- Early and late binding
- Integrity constraints for robustness
- Multiple serializations, e.g. JSON and XML
- Need to be usable on resource constrained devices

Need to support a broad range of requirements, e.g. current value, time stamped data logs, regular stream of samples, and piecewise approximations for continuously changing values for measurements or actuation


Web of Things Value

n

Enabling Vertical and Horizontal Integration

Enabled by semantics, metadata and data models

Discovery of services

n

- The benefits of a lingua franca, and its limitations
- Composition of services
 - From different vendors for an open market of services
- Monetization of services
 - Support for a wide variety of models
- Security, privacy, safety, compliance, trust, resilience
- Scaling on multiple dimensions
 - From microcontrollers to massive cloud-based server farms Scaling across communities and the inevitability of change

Business Value for the Web of Things

Large companies want their suppliers to integrate with their software systems for greater efficiencies

• Integration along the supply and value chains

n

SMEs find this enabling – the cost of developing the corresponding software is reduced

• Replacing costly monolithic software with cheaper apps & services

Enables an Open Market of Things

Apps for connecting suppliers and consumers

- Analogous to marketplaces of apps for smart phones
- SME's can script apps to suit their specific needs

Marketplace features

n

- Discovery, reviews, recommendations, ranking/reputation
- Dynamic composition to match given requirements
- Automated negotiation of contracts to save time and money

Lifecycle support

• Developing, testing, publishing, vetting, updates, obsolescence

Web of Things Activity

n

W3C Web of Things Interest Group

Workshop in Berlin (June 2014)

- Launch of Web of Things IG in 2015
- Chaired by Jörg Heuer, Siemens
- Task forces

n

- Thing descriptions
- APIs and protocols
- Discovery and provisioning
- Security, privacy and resilience
- Communications and collaboration

Strong emphasis on implementation experience

• Demos and plug-fests

Face to face meetings

- Past: Munich, Sunnyvale, Sapporo, Sophia Antipolis
- Joint meetings with IRTF Thing to Thing Research Group
- Future: Montreal, Canada (April 2016); Beijing, China (July 2016); Lisbon, Portugal (September 2016)

Plan: smart automation task force

• Other application domains to follow

Liaisons with industry alliances and SDOs to drive convergence

• White paper on semantic interoperability as a way to build a shared understanding and roadmap

Liaisons and Collaborations

Reaching out to industry alliances and SDO's to drive convergence to unleash the potential

OPEN

CONNECTIVITY FOUNDATION

one

• Plattform Industrie 4.0

Especially the "semantics" subgroup

- Industrial Internet Consortium
- Open Connectivity Foundation
- OPC Foundation
- IETF/IRTF
- oneM2M
- AIOTI

n

Members of the Web of Things Interest Group

4

Web of Things Working Group

The Interest Group (IG) is working on

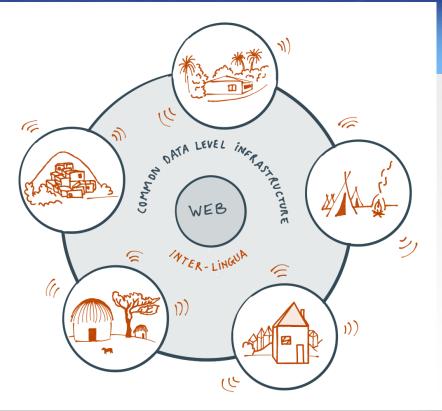
n

- Use cases, requirements, technology landscape and plans for launching working groups (WG)
- IGs prepare the ground for standards but don't develop standards
- WGs are chartered to develop standards (W3C Recommendations)

We're collecting ideas including

- Horizontal metadata vocabularies (things, security, communications)
- Serialisations of metadata, e.g., as JSON-LD
- APIs and bindings to specific protocols and platforms

Web of Things Working Group to be launched in 2016


The Bottom Line

The Web is essential for realizing the full potential of the IoT

n

The Web provides a unifying framework for semantic interoperability

The Web acts as a global marketplace for suppliers and consumers of services

Work with us to build the Web of Things!

n

For more information on W3C see:

www.w3.org

Thank you!

31/31