Security and Privacy Analysis of NSF Future Internet Architectures

Moreno Ambrosin1, Alberto Compagno2, Mauro Conti1, Cesar Ghali3, Gene Tsudik3

1University of Padua, Italy
2University “La Sapienza” of Rome, Italy
3University of California Irvine, CA, USA
Internet Security & Privacy

• S&P in the current Internet are certainly NOT a success story
• Retrofitted, incremental, band-aid-style solutions, e.g.:
 ○ SSH,
 ○ SSL/TLS,
 ○ IPSec + IKE,
 ○ DNSSec,
 ○ sBGP, etc.
NSF Future Internet Architectures (FIA) program

• Targeted NSF-funded program, 2-tiered competition

• Major goals:
 ○ Design comprehensive next-generation Internet architectures
 ○ Accommodate current and emerging communication paradigms
 ○ Security and privacy from the outset (by design)

• Projects:
 ○ NDN: Named-Data Networking (Phases I and II)
 ○ MobilityFirst (Phases I and II)
 ○ XIA: eXpressive Internet Architecture (Phases I and II)
 ○ ChoiceNet (started in 2012, not strictly speaking FIA)
 ○ Nebula (Phase I)
NSF Future Internet Architectures (FIA) program

• Targeted NSF-funded program, 2-tiered competition
• Major goals:
 ○ Design comprehensive next-generation Internet architectures
 ○ Accommodate current and emerging communication paradigms
 ○ Security and privacy from the outset (by design)
• Projects:
 ○ NDN: Named-Data Networking (Phases I and II)
 ○ MobilityFirst (Phases I and II)
 ○ XIA: eXpressive Internet Architecture (Phases I and II)
 ○ ChoiceNet (started in 2012, not strictly speaking FIA)
 ○ Nebula (Phase I)
Our Comparison

• S&P of the network layer (data plane) of 4 FIA architectures with IP (IPSec)
 ○ Trust, Data origin authentication, Peer entity authentication, Data integrity, Authorization and access control, Accountability, Data confidentiality, Traffic flow confidentiality, Anonymous communication

• Here, we discuss only some of them for NDN, MF, and XIA
 ○ The more interesting ones
NDN & CCNx

- “Named data networking project (NDN)”, http://named-data.org
- “Content centric networking (CCNx) project”, http://www.ccnx.org
Security

• Integrity and trust as properties of content
 ○ Every content packet carries a signature
 ○ Producer generates the signature (producers have identities)

• Confidentiality through encryption
NDN/CCN vs IP: S&P Comparison (1/3)

• Trust:
 ○ IP: In IPSec end-hosts are trusted
 ○ NDN: Trust is on content, not host. Different granularity (namespace, content object)

• Data Origin Authentication and Integrity:
 ○ IP: Available only within an IPSec pipe (e.g., gateway-to-gateway)
 ○ NDN: Content signature bound to producer identity no matter where they come from
NDN/CCN vs IP: S&P Comparison (2/3)

- Peer entity authentication:
 - IP: During SA establishment peers of an IPSec connection are authenticated
 - NDN: Not available. However, signed interest helps to authenticate consumers

- Authorization & Access Control:
 - IP: No suitable access control for content at this layer
 - NDN: Access control on content mainly through encryption
NDN/CCN vs IP: S&P Comparison (3/3)

• Availability (resilience to DoS):
 ○ IP: Bandwidth depletion (flooding) easy to achieve (IP spoofing, amplification, reflection)
 ○ NDN: Bandwidth depletion harder due to pull-based communication and aggregation
Attacks on NDN & CCN

• Router resource exhaustion:
 ○ Interest flooding attack exhaust PIT

• Cache Related attacks
 ○ Content poisoning
 ○ Cache pollution
Overview:
MobilityFirst: A Mobility-Centric and Trustworthy Internet Architecture, ACM CCR 2014.

Project webpage: http://mobilityfirst.winlab.rutgers.edu/
Service API capabilities:
- **send (GUID, options, data)**
 Options = anycast, mcast, time, ..
- **get (content_GUID, options)**
 Options = nearest, all, ..

Name Certification Services (NCS)

Register “John Smith22’s devices” with NCS

GUID lookup from directory

GUID assigned

Send (GUID = 11011..011, SID=01, data)

Slow path forwarding

GUID <-> NA lookup

Send (GUID = 11011..011, SID=01, NA99, NA32, data)

GUID = 11011..011

Represents network object with 2 devices

Packet sent out by host
MF vs IP: S&P Comparison

• Trust:
 ○ IP: In IPSec end hosts are trusted
 ○ MF: trust on hosts, content and services. Self-certifying GUID increase trust.

• Peer Entity Authentication:
 ○ IP: ISAKMP relies on PKI or pre-shared keys
 ○ MF: SCN for GUID makes easy to achieve without PKI
MF vs IP: S&P Comparison

• Data Integrity:
 ○ IP: Apply to packets coming from the other end of the IPSec pipe
 ○ MF: Only for content principals. GUID is the hash of the content

• Data origin authentication, Data confidentiality, Traffic flow confidentiality, Anonymous communication, Accountability, Availability:
 ○ No difference between MF and IP
Attacks on MobilityFirst

• Information manipulation:
 ○ AS can withdraw IP address storing GNRS mapping
 ○ All (orphan) mappings move to next AS
 ○ Original AS is responsible for moving them
 ○ GNRS is not secure → adversary can inject (orphan) mappings

• Late binding: slow path can be abused to launch DoS attacks on routers

• Nasty GUID-NA mapping: adversary sends PDU with fake GUID-NA mapping. Destination border router forced to query GNRS to discover correct NA
eXpressive Internet Architecture
XIA

• Current internet focuses on one principal, e.g., IP
• Communication with others add complexity
• Future internet should be x-centric
• XIA is a principal-centric approach
• Principals: host, domain, service, content …
• XIA Goal:
 ○ Intrinsic security: principals should be secure without external validation information
XIA – Design Requirements

• Users and applications must be able to express their intent:
 ○ Any intent types should (will) be supported

• Principal types must be able to evolve:
 ○ Adding principals should be possible and easy
 ○ Network adaptation could be incremental

• Principal identifiers should be intrinsically secure

• Host-to-host communication, hosts should be authenticated

• Content retrieval, data integrity and validity
XIA – Design Requirements

• Must define:
 ○ Semantics of communicating with the principal
 ○ Unique XID (principle ID), e.g. HIDs, SIDs, CIDs, and ADs
 ○ Way to generate these ID and map them to intrinsic security properties
 ○ In-network processing and routing of packets (should be consistent and distributed)
XIA Data Plane

• XIP: allows communication, and defines address, header format, per-principal processing

• Principal type-specific support: e.g.
 ○ Host principle might use traditional routing
 ○ Content principal might check local cache before forwarding requests
XIA – Principals

• Host:
 ○ HID: hash of public key
 ○ Constant regardless of the host’s network

• Network:
 ○ NID: hash of public key
 ○ Networks contains multiple hosts

• Service:
 ○ SID: hash of public key
 ○ Similar to destination port
 ○ Destination address: NID:HID:SID
XIA – Principals

• Content:
 ○ CID: hash of content
 ○ Address Usually has fallback
 ○ Can be retrieved from host or cache
 ○ Packet contains content-specific header

• All routers must be able to process NID and HID principles

• For other principles, routers must perform at least basic processing, e.g. forwarding
XIA vs. IP: S&P Comparison

• Trust:
 ○ SCION is used for trusted path selection
 ○ SCION provides control and isolation for secure, available end-to-end communication

• Data origin authentication, Peer entity authentication:
 ○ IPSec provides these features
 ○ Not provided by design
 ○ Self-certifying names can be used to provide these features
XIA vs. IP: S&P Comparison

• Integrity:
 ○ Provided by IPSec in IP
 ○ Only available for content principals since identifiers generated based on content hash
 ○ Deferred to application for other principal types

• Authorization & access control:
 ○ Combination of IP and NDN
 ○ Content principals: at content granularity
 ○ Other principal types: ACLs can be used
XIA vs. IP: S&P Comparison

• Availability:
 ○ Bandwidth depletion easy to achieve, similar to IP
 ○ Self-certifying names obviate content poisoning attacks

• Anonymous Communication:
 ○ Can be provided by IP using, e.g., TOR
 ○ Suffer from same problem as IP: src and dst included in packets
 ○ XIA also contains the entire path ... even worse
 ○ IP-like methods can be used, e.g., TOR.
Summary

<table>
<thead>
<tr>
<th>Security & Privacy Features</th>
<th>Network layers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nebula</td>
</tr>
<tr>
<td>Trust</td>
<td>✓</td>
</tr>
<tr>
<td>Data Origin Authentication</td>
<td>◯</td>
</tr>
<tr>
<td>Peer entity Authentication</td>
<td>◯</td>
</tr>
<tr>
<td>Data Integrity</td>
<td>◯</td>
</tr>
<tr>
<td>Authorization and Access Control</td>
<td>✓</td>
</tr>
<tr>
<td>Accountability</td>
<td>✓</td>
</tr>
<tr>
<td>Data Confidentiality</td>
<td>✗</td>
</tr>
<tr>
<td>Traffic Flow Confidentiality</td>
<td>✗</td>
</tr>
<tr>
<td>Anonymous Communication</td>
<td>✗</td>
</tr>
<tr>
<td>Availability</td>
<td>◯</td>
</tr>
</tbody>
</table>
Thank You... Questions?
Who is NDN?
NDN Basic Concepts

• Name:
 ○ Human-readable, path/url-like

• Roles:
 ○ Consumer
 ○ Producer
 ○ Router

• Objects:
 ○ Content
NDN: quick recap (1/2)

• PRODUCER
 ○ Announces name prefixes
 ○ Names and signs content packets
 ○ Injects content by answering interests

• CONSUMER
 ○ Generates interest packets referring to content by name
 ○ Receives content, verifies signature, decrypts if necessary
NDN: quick recap (2/2)

- ROUTER
 - Routes interests based on (hierarchical) name prefixes
 - Inherently multicast
 - Remembers where Interests came from (PIT)
 - Returns content along same path
 - Optionally caches content (in CS)
 - May verify content signatures
How NDN works (abbrv. version)

- Carries content name
- No source/destination address

- Named data (content)
- Routed using state
The Players:

• Rutgers University
• University of Massachusetts – Amherst
• Duke University
• MIT
• University of Wisconsin, Madison
• University of Nebraska
MobilityFirst Design Concepts

• Design principles:
 ○ wireless connections are ubiquitous and pervasive
 ○ seamless mobility in endpoints
 ○ network resilience to endpoints and router compromission

• Key idea:
 ○ separate identity from location

• Three types of identifiers:
 ○ Human Readable Names (HRN)
MobilityFirst

• GUID uniquely identifies a principal: host or content
• HRN-s are not used for routing; translated to GUID-s
• GUID-s and NA-s are used for routing/forwarding
• Two translation services:
 ○ Name Certification Service (NCS):
 - Translates HRN \leftrightarrow GUID
 ○ General Name Resolution Service (GNRS):
 - Translates GUID \leftrightarrow NA

http://nebula-fia.org/
Nebula Partners
Architecture

• Goal: provide a secure cloud-oriented networking architecture

• Three components
 ○ **NCore**: ultra-reliable, redundantly-connected core routers
 ○ **NDP**: multi-path, policy-enforcing control plane
 ○ **NVENT**: extensible control plane
Security Overview

- **NVENT**: establishes trustworthy routes based on policy routing
- **NDP**: constrains data packets to NVENT-selected routes by enforcing consent and provenance
- **NCore**: ensures availability via ultra-reliable routers and interconnection architectures for data centers
Nebula Data Plane (NDP)

- Offers secure communication
 - When all relevant parties agree to participate
- ICING provides:
 - Path verification mechanism (PVM)
 - Path selection
 - Topology discovery
 - Forwarding
NDP - Naming

• NDP realms use self-certifying names (SCNs)

• Realm name is a self-generated PK (Public Key)
 ○ Can create spurious realms but not impersonate

• No need for central naming authority

• Node names also SCN-based

• NDP nodes use non-interactive Diffie-Hellman (NIDH) to establish pairwise PoP keys
 ○ But, how are DH PKs distributed? SCNs…
• Path Verification Mechanism (PVM):
 ○ Path Consent via *Proof-of-Consent (PoC)*:
 - Each intervening node agrees to be part of path based on its (realm) policy
 ○ Path Compliance via *Proof-of-Provenance (PoP)*:
 - Forwarding node checks whether:
 ● Path has been approved
 ● Previous nodes followed forwarding policy
 ○ PoC-s and PoP-s are implemented as cryptographic tokens (MAC)
NDP - ICING

• Prior to communication, sender requests PoC_i from each path node N_i
 ○ Actually, from each distinct provider on the path

• PoC_i generated by consent server at N_i’s provider (Here, provider = realm)
 ○ Not session-specific

• Each provider has at least one consent server

• PoC_i means:
 ○ N_i’s provider agrees to carry packets on the path
NDP vs IP: S&P Comparison (1/3)

• Trust
 ○ **IP**: IPSec secures communication between two or more network entities (hosts or networks) ← “end-to-end” trust
 ○ **Nebula**: ICING guarantee path consent and provenance ← trust among sender and intermediate nodes of a path

• Peer entity authentication
 ○ **IP**: During SA establishment peers of an IPSec connection are authenticated
 ○ **Nebula**: path consent authenticate sender and intermediate nodes
NDP vs IP: S&P Comparison (2/3)

• Integrity
 ○ IP: given by AH or ESP header
 ○ **Nebula**: comes with consent and provenance. Mainly gateway will verify integrity

• Authorization & Access Control:
 ○ IP: Routers applies access control list on IP addresses (or prefixes)
 ○ **Nebula**: Consent server grant access to a network through PoC

• Accountability
NDP vs IP: S&P Comparison (3/3)

- **Availability:**
 - **IP:** Bandwidth depletion easy to achieve (IP spoofing, amplification, reflection)
 - **Nebula:** Bandwidth depletion hard to mount due to path consent

- **Anonymous Communication:**
 - **IP:** not provided. Tor “guarantee” anonymity
 - **Nebula:** hard to achieve due to path consent and provenance
Attacks on Nebula (1/2)

• NDP (ICING) Router “slow path” attacks:
 ○ PoP computation by router may required NIDH to compute pairwise keys – time-consuming
 ○ Packets with fake node IDs can force routers to perform expensive crypto operations
 ○ ICING uses explicit “hardeners” in the header to prevent such attacks:

\[V_i.hardener = \text{PRF-32}(\text{PoC}_i.proof, 0 \ || \ \text{HASH}(P \ || \ M)) \]
Attacks on Nebula (2/2)

• NDP (ICING) packet-level attacks:
 ○ Replay attacks:
 - Adv replays copies of valid packets
 - Sequence number (16 bits)
 ○ Injection attacks:
 - Adv injects fake packets
 - Easy to detect (most crypto ops are lightweight)