Unidirectional Streams in
Minq

Eric Rescorla
ekr@rtfm.com

Overall Status

e Ming master currently implements -05
o With HTTP/0.9

¢ Mingunidirectional streams branch implements (QUIC-only)
o PR #643: "Unidirectional Streams”

o PR #720: "Add bidirectional streams on top of unidirectional”
o A bidirectional "unified" stream APT on top (nearly the same API as master)

e Total fime investment to adapt to unidirectional: ~16 hours

Recap: Changes under discussion

o PR#643

o Streams are unidirectional only (initiated by sender)
o Simplified state machine (no need to look at peer’s state)
o No odd/even semantics

(@)
e PR#720
o Streams can indicate that they are related to another existing stream in the other
direction

o Extra bits in the stream frame to carry this
o Allows 1:N relation

Architecture for -05

Ha(";'s;rjfm [Chunk 1 [Chunk 1 [Chunk }—»
Stream
Half-stream)))
(recv) Chunk Chunk Chunk |~
Connection
Half-st () () ()
“cend) | | Chunk | | Chunk | | Chunk |-~
Stream
Half-stream | [N (N ()
(recv) Chunk Chunk Chunk |~

Architecture for Unidirectional Streams

Connection

~

J

~

J

M|

~

J

~

J

sendstreamy Soap nes| Nepunk | | Ghunk
(local first) J J
SendStream) () (
(remote first) &Chunk) \Chunk) \Chunk

\) 4) 4
RecvStream /\Chunk Chunk Chunk

/

/ N\ 4 N\ 4
RecvStream V] Chunk Chunk Chunk
RecvStream / Chunk Chunk Chunk

(&

J

(&

J

(&

~

J

Bidirectional Streams API

Connection? is a bidirectional wrapper for Connection
o Actually, Connection is a mixin

Stream is a pair of SendStream and RecvStream
o API calls mostly go to the underlying directional stream

Still working out Close()

o But that's because we don't understand semantics
Possible to use bidirectional streams API with a "conformant
related-streams peer (my test programs work this way)
Note: this won't work with many-to-one related mappings

n

Bidirectional Streams Internals

e Streams locally created with CreateStream()
e Remote streams notified with NewStream () event

e When locally created (send first), starts with an empty RecvsStream
o Read() at this point appear to block
o RecvStream automatically filled in when a related recv stream appears

e When remotely created (recv first), we secretly create a paired
SendStream, ready for use

Impact on Applications

e Straightforward API call mapping
O GetReceiveStream(), CreateSendStream(), CreateRelatedSendStream/()
o Bidirectional protocols need a bit of work
m With remote-first streams, do CreateRelatedSendStream ()
m With local-first streams, Connection calls NewRecvStream() callback

e With bidirectional APT, mostly just search and replace

O s/Connection/Connection?2/

Disadvantages of unidirectional streams

e A bit more work for bidirectional protocols
o But bidirectional API hides this
e Semantics of closure are kind of unclear
o What APT should we provide? (close (), shutdown ())
o What APT should T use if I don't like a remotely created stream
e Easier for sides to disagree about mapping
o Is this stream unpaired, 1:1, or 1:N?
o If's not signalled inband right now
o This will need to be specified in the protocol
e "Related streams” header inclusion rules are a bit awkward
o Proposal: require in all stream packets till one ACKed

Advantages of unidirectional streams

e Was easier and more natural to implement
o "Stream halves” don't really make sense
o Composition let me share the common pieces

o Simpler state machine (e.q., Reset () always goes to CLOSED, not sometimes to
HC-Local)

o No goofy odd/even semantics
e C(learer semantics around remote creation
o Inbidirectional, if I receive STREAM_MAX_DATA can I send?

e More flexible semantics
o unpaired, 1:1, or 1:N mappings

