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Overall Status

● Minq master currently implements -05
○ With HTTP/0.9

● Minq unidirectional_streams branch implements (QUIC-only)
○ PR #643: “Unidirectional Streams”
○ PR #720: “Add bidirectional streams on top of unidirectional”
○ A bidirectional “unified” stream API on top (nearly the same API as master)

● Total time investment to adapt to unidirectional: ~16 hours



Recap: Changes under discussion
● PR#643

○ Streams are unidirectional only (initiated by sender)
○ Simplified state machine (no need to look at peer’s state)
○ No odd/even semantics
○

● PR#720
○ Streams can indicate that they are related to another existing stream in the other 

direction
○ Extra bits in the stream frame to carry this
○ Allows 1:N relation



Architecture for -05
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Architecture for Unidirectional Streams
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Bidirectional Streams API
● Connection2 is a bidirectional wrapper for Connection

○ Actually, Connection  is a mixin
● Stream is a pair of SendStream and RecvStream

○ API calls mostly go to the underlying directional stream
● Still working out Close()

○ But that’s because we don’t understand semantics
● Possible to use bidirectional streams API with a “conformant” 

related-streams peer (my test programs work this way)
● Note: this won’t work with many-to-one related mappings



Bidirectional Streams Internals
● Streams locally created with CreateStream()
● Remote streams notified with NewStream()event
● When locally created (send first), starts with an empty RecvStream

○ Read() at this point appear to block
○ RecvStream  automatically filled in when a related recv stream appears

● When remotely created (recv first), we secretly create a paired 
SendStream, ready for use



Impact on Applications
● Straightforward API call mapping

○ GetReceiveStream(), CreateSendStream(), CreateRelatedSendStream()
○ Bidirectional protocols need a bit of work

■ With remote-first streams, do CreateRelatedSendStream()
■ With local-first streams, Connection calls NewRecvStream()  callback

● With bidirectional API, mostly just search and replace
○ s/Connection/Connection2/



Disadvantages of unidirectional streams
● A bit more work for bidirectional protocols

○ But bidirectional API hides this
● Semantics of closure are kind of unclear

○ What API should we provide? (close(), shutdown() )
○ What API should I use if I don’t like a remotely created stream

● Easier for sides to disagree about mapping
○ Is this stream unpaired, 1:1, or 1:N?
○ It’s not signalled inband right now
○ This will need to be specified in the protocol

● “Related streams” header inclusion rules are a bit awkward
○ Proposal: require in all stream packets till one ACKed



Advantages of unidirectional streams
● Was easier and more natural to implement

○ “Stream halves” don’t really make sense
○ Composition let me share the common pieces
○ Simpler state machine (e.g., Reset() always goes to CLOSED, not sometimes to 

HC-Local)
○ No goofy odd/even semantics 

● Clearer semantics around remote creation
○ In bidirectional, if I receive STREAM_MAX_DATA can I send?

● More flexible semantics
○ unpaired, 1:1, or 1:N mappings


