
Unidirectional Streams in
Minq

Eric Rescorla
ekr@rtfm.com

Overall Status

● Minq master currently implements -05
○ With HTTP/0.9

● Minq unidirectional_streams branch implements (QUIC-only)
○ PR #643: “Unidirectional Streams”
○ PR #720: “Add bidirectional streams on top of unidirectional”
○ A bidirectional “unified” stream API on top (nearly the same API as master)

● Total time investment to adapt to unidirectional: ~16 hours

Recap: Changes under discussion
● PR#643

○ Streams are unidirectional only (initiated by sender)
○ Simplified state machine (no need to look at peer’s state)
○ No odd/even semantics
○

● PR#720
○ Streams can indicate that they are related to another existing stream in the other

direction
○ Extra bits in the stream frame to carry this
○ Allows 1:N relation

Architecture for -05

Connection

Stream

Stream

Half-stream
(send)

Half-stream
(recv)

Chunk Chunk Chunk

Chunk Chunk Chunk

Half-stream
(send)

Half-stream
(recv)

Chunk Chunk Chunk

Chunk Chunk Chunk

Architecture for Unidirectional Streams

Connection

SendStream
(local first) Chunk Chunk Chunk

Chunk Chunk Chunk

SendStream
(remote first)

RecvStream

RecvStream

Chunk Chunk Chunk

Chunk Chunk Chunk

RecvStream Chunk Chunk Chunk

Bidirectional Streams API
● Connection2 is a bidirectional wrapper for Connection

○ Actually, Connection is a mixin
● Stream is a pair of SendStream and RecvStream

○ API calls mostly go to the underlying directional stream
● Still working out Close()

○ But that’s because we don’t understand semantics
● Possible to use bidirectional streams API with a “conformant”

related-streams peer (my test programs work this way)
● Note: this won’t work with many-to-one related mappings

Bidirectional Streams Internals
● Streams locally created with CreateStream()
● Remote streams notified with NewStream()event
● When locally created (send first), starts with an empty RecvStream

○ Read() at this point appear to block
○ RecvStream automatically filled in when a related recv stream appears

● When remotely created (recv first), we secretly create a paired
SendStream, ready for use

Impact on Applications
● Straightforward API call mapping

○ GetReceiveStream(), CreateSendStream(), CreateRelatedSendStream()
○ Bidirectional protocols need a bit of work

■ With remote-first streams, do CreateRelatedSendStream()
■ With local-first streams, Connection calls NewRecvStream() callback

● With bidirectional API, mostly just search and replace
○ s/Connection/Connection2/

Disadvantages of unidirectional streams
● A bit more work for bidirectional protocols

○ But bidirectional API hides this
● Semantics of closure are kind of unclear

○ What API should we provide? (close(), shutdown())
○ What API should I use if I don’t like a remotely created stream

● Easier for sides to disagree about mapping
○ Is this stream unpaired, 1:1, or 1:N?
○ It’s not signalled inband right now
○ This will need to be specified in the protocol

● “Related streams” header inclusion rules are a bit awkward
○ Proposal: require in all stream packets till one ACKed

Advantages of unidirectional streams
● Was easier and more natural to implement

○ “Stream halves” don’t really make sense
○ Composition let me share the common pieces
○ Simpler state machine (e.g., Reset() always goes to CLOSED, not sometimes to

HC-Local)
○ No goofy odd/even semantics

● Clearer semantics around remote creation
○ In bidirectional, if I receive STREAM_MAX_DATA can I send?

● More flexible semantics
○ unpaired, 1:1, or 1:N mappings

