Update on RMCAT Video Traffic Model: Trace Analysis and Model Update

draft-ietf-rmcat-video-traffic-model-02

Xiaoqing Zhu, Sergio Mena, and Zahed Sarker

April 2017 | IETF RMCAT Virtual Interim
Outline

• Setup for trace collection from modified Mozilla browser
• Analysis of transient and steady-state traces
• Proposed revision of statistical model parameters
• Next steps: updates to draft and Syncodecs
Setup: Test Video Sequence

Chat about Austin (Chat)

- Three people chatting about living in Austin
- Captured through Cisco Telepresence unit

- Original sequence:
 - Resolution: 1080p
 - Frame rate: 30 fps
 - Encoder: H.264
 - Encoding rate: 4.1 Mb/s
 - Duration: 6:34s

- Converted to yuv420p via ffmpeg:
 - First 7200 frames (4 minutes)
 - Multiple resolutions 1080p, 720p, 540p, 360p, 240p, 180p, 90p

Setup: Modified Mozilla Browser

• Reused source code changes presented in IETF-97: Codec disregards input from congestion controller and follows hardcoded bitrate pattern instead.

• Further code changes in VideoConduit.cpp:
 • Extended hard-coded bitrate pattern for the entire duration of 7200 frames.
 • For studying transient behavior: switching between 1Mbps and various target rates (+/- 20%, 40%, 60%, and 80%) in 10-second steps.
 • For studying steady-state behavior: cycling through all target rates at each resolution in one long running session (with looping video).
Setup: Trace Generation

- For each bitrate variation pattern, ran modified Mozilla browser at all resolutions using H.264 codec

- Observation: sometimes the codec misses output frames (root cause pending further investigation)

- Resolution:
 - Removed “unreasonable” configs (e.g., 1080p@100Kbps)
 - Multiple runs for each config and keep the most regular trace

- The format of output traces are compatible with Syncodecs
Setup: Screen Capture of Test HTML

Simple RTCPeerConnection Video Test

Stop: Use Fake Audio/Video for reverse stream Use Fake Audio/Video for forward stream One-way call Audio-only call Video-only call

Disable video Disable audio Require H.264 video Require G.722 audio

Video Constraints in JSON (use quotes!)

Enable Identity Provider: Domain
Protocol
User A Name
User B Name

Parsing JSON:

Offer: v=0
o=mozilla...THIS_IS_SDPARTA-50.0 2689953430245834322 0 IN IP4 0.0.0.0
a=recvonly
r=0 0
i=0

User A Name:
User B Name:

Video Constraints in JSON (use quotes!):

[]
Analysis of Transient and Steady-State Traces
Encoded Frame Size and Distribution of Frame Intervals

chat l h264@720p

Frame Size (KB)

Time (s)

AVG: 33.9 ms
STD: 8.1 ms

chat l h264@1080p

Frame Size (KB)

Time (s)

AVG: 34.7 ms
STD: 10.2 ms
Transition between 1Mbps and 1.2Mbps (+/- 20%)

chat | h264@720p
Burst frame size: 13.7 KB
Burst duration: 7 frames

chat | h264@1080p
Burst frame size: 20.1 KB
Burst duration: 8 frames

chat | h264@720p
Burst frame size: 13.6 KB
Burst duration: 7 frames

chat | h264@1080p
Burst frame size: 20.2 KB
Burst duration: 6 frames
Transition between 1Mbps and 1.6Mbps (+/- 60%)

chat l h264@720p

Burst frame size: 13.5 KB
Burst duration: 8 frames

chat l h264@1080p

Burst frame size: 19.9 KB
Burst duration: 10 frames

chat l h264@720p

Burst frame size: 13.7 KB
Burst duration: 10 frames

chat l h264@1080p

Burst frame size: 20.1 KB
Burst duration: 8 frames
Details Statistics on Burst Frame Size and Duration

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Start Rate (Kbps)</th>
<th>Target Rate (Kbps)</th>
<th>K_B: Burst Frame Size (K_B, in KB)</th>
<th>Burst Duration (K_d, in # of Frames)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>720p</td>
<td>1080p</td>
</tr>
<tr>
<td>20</td>
<td>1000</td>
<td>1200</td>
<td>13.7</td>
<td>20.1</td>
</tr>
<tr>
<td>40</td>
<td>1200</td>
<td>1000</td>
<td>13.6</td>
<td>20.2</td>
</tr>
<tr>
<td>60</td>
<td>1000</td>
<td>800</td>
<td>12.0</td>
<td>20.2</td>
</tr>
<tr>
<td>80</td>
<td>800</td>
<td>1000</td>
<td>13.6</td>
<td>20.1</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
<td>1400</td>
<td>13.4</td>
<td>19.5</td>
</tr>
<tr>
<td>120</td>
<td>1400</td>
<td>1000</td>
<td>13.5</td>
<td>19.9</td>
</tr>
<tr>
<td>140</td>
<td>1000</td>
<td>600</td>
<td>11.7</td>
<td>19.7</td>
</tr>
<tr>
<td>160</td>
<td>600</td>
<td>1000</td>
<td>13.7</td>
<td>20.0</td>
</tr>
<tr>
<td>180</td>
<td>1000</td>
<td>1600</td>
<td>13.5</td>
<td>19.9</td>
</tr>
<tr>
<td>200</td>
<td>1600</td>
<td>1000</td>
<td>13.7</td>
<td>20.1</td>
</tr>
<tr>
<td>220</td>
<td>1000</td>
<td>400</td>
<td>12.2</td>
<td>20.4</td>
</tr>
<tr>
<td>240</td>
<td>400</td>
<td>1000</td>
<td>13.4</td>
<td>20.1</td>
</tr>
<tr>
<td>260</td>
<td>1000</td>
<td>2000</td>
<td>16.3</td>
<td>23.1</td>
</tr>
<tr>
<td>280</td>
<td>2000</td>
<td>1000</td>
<td>12.8</td>
<td>19.0</td>
</tr>
<tr>
<td>300</td>
<td>1000</td>
<td>200</td>
<td>11.5</td>
<td>19.5</td>
</tr>
<tr>
<td>320</td>
<td>200</td>
<td>1000</td>
<td>12.9</td>
<td>19.2</td>
</tr>
<tr>
<td>Median Value</td>
<td></td>
<td></td>
<td>13.5</td>
<td>20.1</td>
</tr>
<tr>
<td>Range of Value</td>
<td></td>
<td></td>
<td>11.5 - 16.3</td>
<td>19 - 23.1</td>
</tr>
</tbody>
</table>
Overview of Steady-State Traces: Target Rate vs. Actual Rate

Ratio of Actual vs. Target Rate

<table>
<thead>
<tr>
<th>%</th>
<th>100 Kbps</th>
<th>200 Kbps</th>
<th>400 Kbps</th>
<th>600 Kbps</th>
<th>800 Kbps</th>
<th>1000 Kbps</th>
<th>1200 Kbps</th>
<th>1500 Kbps</th>
<th>2000 Kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>90p</td>
<td>59</td>
<td>37</td>
<td>19</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>180p</td>
<td>84</td>
<td>76</td>
<td>56</td>
<td>40</td>
<td>30</td>
<td>24</td>
<td>20</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>240p</td>
<td>91</td>
<td>84</td>
<td>71</td>
<td>56</td>
<td>44</td>
<td>36</td>
<td>30</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>360p</td>
<td>96</td>
<td>89</td>
<td>84</td>
<td>77</td>
<td>68</td>
<td>59</td>
<td>51</td>
<td>42</td>
<td>32</td>
</tr>
<tr>
<td>540p</td>
<td>99</td>
<td>98</td>
<td>96</td>
<td>93</td>
<td>89</td>
<td>85</td>
<td>77</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>720p</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>99</td>
<td>98</td>
<td>96</td>
<td>93</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>1080p</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- <50%
- 50-75%
- 75-100%
Overview of Steady-State Traces: Relative Rate Variations

Observations:
• For a given rate, relative rate variation decreases with higher resolutions;
• For a given resolution, relative rate variation increases with higher rates.
Example Trace and Histogram: 600 Kbps @ 360p

Frame Size (KB)

Frame Interval (ms)

Probability (%)
Example Trace and Histogram: 600 Kbps @ 540p

Frame Size (KB)

Frame Interval (ms)

Laplacian: SCALE_B = 14.5%

Laplacian: SCALE_t = 13.1%
Example Trace and Histogram: 600 Kbps @ 720p
Example Trace and Histogram: 600 Kbps @ 1080p

600 kbps @ 1080p

Frame Size (KB)

0 1 2 3 4 5
0 50 100 150 200

Probability (%)

0 10 20 30 40
0 5 10 15

Frame Size (KB)

Laplacian: SCALE_B = 5.5 %

Laplacian: SCALE_t = 12.3%
Laplace Distribution of Frame Size and Intervals

SCALE_B for Frame Size Distributions

<table>
<thead>
<tr>
<th>%</th>
<th>100 Kbps</th>
<th>200 Kbps</th>
<th>400 Kbps</th>
<th>600 Kbps</th>
<th>800 Kbps</th>
<th>1000 Kbps</th>
<th>1200 Kbps</th>
<th>1500 Kbps</th>
<th>2000 Kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>90p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>720p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Range of values: 5-23%

SCALE_t for Frame Interval Distributions

<table>
<thead>
<tr>
<th>%</th>
<th>100 Kbps</th>
<th>200 Kbps</th>
<th>400 Kbps</th>
<th>600 Kbps</th>
<th>800 Kbps</th>
<th>1000 Kbps</th>
<th>1200 Kbps</th>
<th>1500 Kbps</th>
<th>2000 Kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>90p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>720p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Range of values: 10-20%
Proposed Model Revisions and Next Steps
Revised Statistical Traffic Model and Updates to video-traffic-model

- Transient behavior characterized by burst frame size (K_B) and duration (K_t) [updated in Jan 2017]

- Laplace distribution of frame intervals:
 - t_0 — reference interval determined by average frame rate: $1/\text{FPS}$
 - SCALE_t — scaling parameter of normalized frame interval (t/t_0): 10-20% [Default: 15%]

- Laplace distribution of steady-state frame sizes
 - B_0 — reference frame size determined by target rate and frame rate: $R/8/\text{FPS}$
 - SCALE_B — scaling parameter of normalized frame size (B/B_0): 5-23% [Default: 15%]
Update to Syncodecs

- Corresponding code changes to reflect revised statistical model
- New group of traces collected from the modified Mozilla browser using the Chat video sequence (encoded with H.264)
- Stay in tuned via mailing list and at https://github.com/cisco/syncodecs