
Mauro Sardara, Luca Muscariello, Alberto Compagno
Software Engineer
ICNRG Interim Meeting, London, 18th of March 2018

Leveraging (h)ICN socket library for carrying HTTP messages
(h)ICN Socket Library for HTTP



Motivations for a 
Socket Library

• Consistency
• Same APIs for everyone

• Separation
• ADU for applications PDU 
for Network

• Complexity
• No layer 4 challenges for 
applications

• Security
• Authentication and 
Integrity as built-in



Application

ADU

Forwarding Engine
L3 PDU

Transport Socket Library
Segmentation Authentication NamingIntegrity

Reassembly Verification Congestion 
ControlFetching

Producer Services

Consumer Services

Routing and Forwarding

Application Logic

Transport Services



Producer Socket Consumer Socket
• ADU Segmentation
• Naming
• Integrity
• Authentication

• Congestion Control
• PDU Fetching
• Signature and Integrity verification
• ADU Reassembly

Application Socket Producer

Segmentation + Naming

Integrity + Authentication

ADU

Publication

Socket Consumer

Signature + Integrity Verification

Congestion Control + PDU Fetching

Reassembly

Manifest

PDU PDU PDU

Application

ADU



Transport Manifest

• Metadata and prefetching
• Network names of next data to 

pull

• Signature Verification
• Manifest always signed

• Integrity Verification
• It contains hashes of contents 

that are going to be pulled

• Performance
• Amortizes verification cost of 

each content object



• Native security features, transparently offered to each application
• 2 Approaches: Manifest authentication vs per packet authentication

• Per Packet Authentication

Authentication and Integrity

• Manifest Authentication

Signed
Manifest

Data 
Packet 1

Data 
Packet 2

Data 
Packet 4

Data 
Packet 3

Data 
Packet 1

Data 
Packet 2

Data 
Packet 4

Data 
Packet 3

Integrity verified with HASH inside Signed 
Manifest.

Integrity verified with the signature itself

Signed
Data Packet



• The ICN transport library, called Libicnet, has been open sourced 
under APACHE 2.0 license on FD.io (https://wiki.fd.io/view/Cicn)

• Language: C++
• Supported Platforms: Ubuntu, CentOS, macOS, iOS, Android
• It allows applications to transparently connect to 2 ICN Forwarders:
• sb-forwarder (a.k.a. Metis)
• cicn-forwarder (vpp based plugin)

• Applications written using this library are able to work also with the 
hICN library (libhicnet)

fd.io open source project
git clone -b libicnet/master https://gerrit.fd.io/r/cicn libicnet;

https://wiki.fd.io/view/Cicn


• Each socket identifies an unidirectional channel (multi-point)

• By using Producer/Consumer sockets an application is able to 
Send/Receive data
ØThe Consumer Socket pulls contents from a Producer socket
ØThe Producer Socket publishes data to be pulled by a Consumer Socket

Bidirectional data exchange between two 
applications

C
P

P
C

Client Server



Example: Implementing push semantics using the 
reverse pull(1)

Alice BobAlice 
creates a 

Consumer/
Producer 

socket pair

C

P

Producer 
Socket 
binds to 

name /alice

Consumer 
Socket binds 

to name 
/bob

P

Producer 
Socket binds 
to name /bob

Bob 
creates a 
Producer 
socketICN 

Network



ICN 
Network

Example: Implementing push semantics using the 
reverse pull(2)

Alice Bob
P

P
/alice

/bob
C

/bob

I want to 
send a 

message 
to Bob!

Let’s signal 
to Bob I 
have a 

message 
for him!

InterestManifest

Name:
/bob/random_number

Payload (Manifest):
/alice/hellobob

Oh, I 
received 

an Interest 
Manifest!

Interest

Name:
/alice/hellobob

C
/alice/hellobob

Hello 
Bob!

/alice/hellobob

I need to pull 
the content

/alice/hellobob.
I will create a 
Consumer!

I received 
the 

message
Hello Bob!

ACK



• The concept explained in the previous slides can be easily applied 
for achieving full HTTP Client/Server communications.

• Clients send HTTP Requests in the same way as explained before
• Servers process Requests and publish Responses
• Clients pull back Responses

HTTP Client and Server



HTTP over ICN PoC
Browser

TCP/IP à ICN
Proxy

ICN 
Network

hICN-enabled
HTTP Server

User’s PC



• If the size of the HTTP requests fits one MTU, it can be directly 
piggybacked within the first interest manifest, by sending the request 
in half RTT.
• The SPDY whitepaper states that typically Request header size of 700-800 bytes 

is common (https://www.chromium.org/spdy/spdy-whitepaper)

• When the client sends the interest manifest to the server, the latter can 
append to the ACK a signed manifest containing the information for 
retrieving the response, allowing clients to directly retrieve it.

Optimizations

https://www.chromium.org/spdy/spdy-whitepaper


• It refers to the problem of sending multiple requests/responses in 
parallel

• The client must be able to associate each response to the 
corresponding request
• HTTP 1.0 uses multiple TCP connections for multiplexing Requests and Responses
• HTTP 1.1 can reuse the same TCP connection, but for being able to associate Responses and 

Requests the server needs to process them in order, likely causing a HOL blocking
• HTTP 2.0 uses one persistent TCP connections and streams, with the overhead of 

demultiplexing at application layer

• ICN solves this problem by associating to each request/response a different 
name prefix: the client always knows what request originated a certain 
response, so it can easily send multiple requests in parallel.

HTTP Request and Response multiplexing



• This experiment shows relevant benefits in using HTTP with an ICN 
transport, in particular for scalability at Server Side

• We consider the case of DASH linear video distribution:
• Cluster of 150 clients connected to an ICN enabled Apache Traffic Server (ATS)

• Reverse Proxy, 2 GB cache, nginx origin server serving 48 channels
• Each client requests one of the 48 available channels (zipf distribution, ⍺=1.4)
• An HTTP Request can be directly served by the transport (rather than by ATS), if the 

corresponding Response has been already published in the Producer socket output buffer

• The video distribution scales with the number of active channels instead of 
the number of active users as using a TCP/IP network.
• Server load (Memory/CPU) considerably reduced with ICN transport

Scalability PoC: Multicast and Server Load






