On the value of a GNS in Information-Centric Network Architectures

V. Arun

University of Massachusetts Amherst

What is ICN?

- ICN = Named information is a central architectural principle [ICNRG]
 - Often contrasted against TCP/IP's host-to-host IP-addresscentric (location-dependent) communication abstraction

Location-independence

An abstraction to communicate using fixed names without worrying about (changing) locations.

Why is today's Internet not location-independent?

[ICNRG] https://irtf.org/icnrg "data becomes independent from location..."

Internet conflates location and identity

All communication must be straitjacketed to an IP-addressable, host-to-host communication primitive

Location-independent network architectures

Host-centric: HIP
Information-centric: TRIAD
PURSUIT
LISP
DONA
XIA
MobilityFirst

Location independence (and information centrism?) not incompatible with presence of locator hints

[ICNRG] https://irtf.org/icnrg

FUNDAMENTAL APPROACHES TO LOCATION INDEPENDENCE

Location independence — mobility

Location independence largely matters only when locators change frequently a.k.a. mobility

Approaches for handling mobility

Indirection routing

Indirection entails data path stretch (steps 3 and 4)

Name-to-address resolution

Lookup/update overhead but no data path stretch

Name-based routing

Research findings

- A logically centralized GNS can significantly enhance mobility support for any network architecture
 - Empirical analysis [GVKH14]
 - Modeling-driven analysis [CKV18]

- [GVKH14] Z. Gao. A. Venkataramani, J. Kurose, S. Hiemlicher, A Quantitative Comparison of Location-Independent Network Architectures, ACM SIGCOMM 2014
- [CKV18] V. Chaganti, J. Kurose, A. Venkataramani, A cross-architectural quantitative evaluation of mobility approaches, IEEE INFOCOM 2018

MOBILITYFIRST GNS

MobilityFirst: Mobility-Centric + Trustworthy

- Key insight: A logically centralized global name service can dramatically enhance seamless mobility, security, and rich network functionality
 - Name-based communication abstraction enabled by selfcertifying GUIDs (globally unique identifiers)

15

Scalable global name service (GNS)

A massively scalable, logically centralized GNS to enable secure, name-based communication with flexible endpoint principals with arbitrary (fixed) names despite high mobility.

GNS DEEPER DIVE

Why GNS critical to handle mobility

Pre-lookup mobility

Connect-time mobility

Individual mobility

Simultaneous mobility

Global name service

GNS critical or can significantly benefit mobility handling in any network architecture

DNS limitations

Authoritative nameserver **ns.xyz.net** Passive caching DNS Single root of trust Static placement enc net ' edu Hierarchical names "JohnSmith2178@Amherst" "Living room chandelier" "Taxis near Times Square"

GNS: Decoupling certification and resolution

Open-source GNS for community use

https://github.com/MobilityFirst/GNS

Currently being used as a foundation for Light-Speed Networking (LSN) ICN-WEN project and being betatested in several pre-production pilot deployments

CONTEXTUAL COMMUNICATION DRIVEN BY GNS

Contextual Communication

- Ability to communicate based on (changing) attribute values (or context), e.g.,
 - send(msg, [lat, lon, radius])
 - get(cam_recording, type="4K", building="CSAIL", time=3pm)

Context-based communication

Why GNS for contextual communication

Key insight: "Solving" the problem of high mobility in a network location space naturally generalizes to mobility in any attribute space

Apps: Hazardous weather warning

CASA Alerts: Collaborative Adaptive Sensing of the Atmosphere

Apps: Campus emergency management

Functional prototype being pilot-trialed at UMass; followed by UCSD

Research challenges

- Scalability: Balancing frequent updates and distributed search in a scalable manner
- Privacy: Ensure provider privacy, i.e., even GNS service provider must not be able to access or infer ACLprotected sensitive contextual attributes
- Programmable APIs: Simple robust APIs for app developers to build contextual applocations

Discussion

BACKUP

High device mobility norm, not exception

Z. Gao, A. Venkataramani, J. Kurose, S. Heimlicher, Towards a Quantitative Comparison of Location-Independent Network Architectures, ACM Sigcomm 2014

31

Takeaways [GVKH14]

- O *Mobility is the norm*, e.g., 20% of users make well over 10 transitions a day
- O Update cost of name-based routing high for devices, e.g., some routers impacted by 14% of mobility events
- O **Update cost of name-based routing small for content**, especially for the unpopular long tail
 - O FIB size? forwarding traffic? path stretch with caching?

[LocInd] A Quantitative Comparison of Location-Independent Network Architectures, ACM SIGCOMM 2014

Conclusions [CKV18]

- <u>Best-port:</u> Best when TTC is high priority and control bandwidth is expendable.
- P-multicast: Best when endpoint has a high probability of being at a popular location, cutting average control cost 60% from best-port, but at the expense of an increased forwarding traffic cost.
- Indirection: Best for small # packets and when TTC is not a concern.
- GNS-based approach: Best when small TTC inflation above best-port is acceptable for a scalable data and control plane cost.
 Provides the most suitable balance of costs.

GNS with active names

Programmable client code upon reads/writes to names

Global name service

Load balancing

- Stateful,
- Feedback-driven
- Spot-price-aware

Active ACLs

- pseudonyms
- policy-based ACLs

34

Auspice GNS summary

Enables secure, name-based communication

- arbitrary name/location representation
- flexible endpoint principals
- handles all types of mobility
- Key differences from DNS for today's Internet
 - federation decoupling certification and resolution
 - active replication
 - demand-aware placement

A logically centralized global name service dramatically enhances mobility, security, and network-layer functionality

