
RICE:
Remote Method Invocation 

in ICN

Michał Król, Karim Habak, Dave Oran, Dirk Kutscher, Yiannis Psaras

�1

draft-kutscher-icnrg-rice-00

!2

Cannot Leverage Computation
in Networks Today

• Significant advances in making computation available,
affordable, programmable

• Virtualization: big leaps from host virtualisation to
unikernels, lambda expression evaluation engines

• Application layer frameworks for data processing,
microservice architectures, virtualized network automation

• Networking is lacking behind

• Connection-based communication and security model:
cannot introduce computation without breaking security
and introducing significant overhead

• IP address-based communication: leads to static and
difficult to manage networked computation (“service
function chaining”) — not applicable to dynamic, mobile
environments

• No concept for computation on data plane: leads to
complex orchestration and management frameworks

!3

AmirMC

Different Perspectives on
Compute & Networking

(Virtualized) Compute Servers in Networks Networked Computations

!4

Data-oriented
Communication

• Several application-layer frameworks

• Data-oriented communication (accessing
named-data on a server)

• Communication inside TLS-secured
connections

• Data sharing difficult

• Limited scalability

• Potentially very inefficient

• Not designed for enterprise 
access control 
& communication policing

• NAT & firewall traversal

!5

In-Network Computing
With Client-Server Protocols

• Overlays

• Connection-based security

• Client-server / broker-based

• Limited Scalability

• Pub-sub distribution to many clients
through single-server bottleneck

• Limited efficiency

• Cannot share data directly

• Limited performance and robustness

• Network cannot assist data
dissemination

Adding a little computation to a data kiosk system is not exactly distributed computing.

!6

Computing in ICN Networks
Can move some functions from overlay (or app layer) to network layer

• Load balancing

• Extend forwarder load-balancing for INTEREST forwarding to computation requests

• Holistic view on load — server load and network load

• Failure resiliency

• Routing state for multiple instances of a function in the network

• Do fail-over implicitly through forwarding (and forwarding strategies)

• Result sharing

• Caching computation results

• Pub-sub

!7

Named Function
Networking

• ICN: Accessing named data in the network

• Securely

• Both static and dynamic (e.g., live stream)

• Challenge: How to achieve dynamic computation?

• With similar security properties?

• ... And automatic function placement?

• Think: edge computing, big data, stream processing, service
chaining

• Named Function Networking

• /getAverage(/roomA/temp, /roomB/tmp)

• Apps specify desired results

• Networks finds data and functions – and execution locations

• Results can be cached just like regular ICN

Christian Tschudin; Named Function Networking Service chaining, big picture,
division of labor boundaries; https://www.ietf.org/proceedings/interim-2015-
icnrg-01/slides/slides-interim-2015-icnrg-1-13.pdf

http://www.named-function.net/

!8

https://www.ietf.org/proceedings/interim-2015-icnrg-01/slides/slides-interim-2015-icnrg-1-13.pdf
https://www.ietf.org/proceedings/interim-2015-icnrg-01/slides/slides-interim-2015-icnrg-1-13.pdf
https://www.ietf.org/proceedings/interim-2015-icnrg-01/slides/slides-interim-2015-icnrg-1-13.pdf
http://www.named-function.net/

NFN for Data-Oriented
Applications

Fine-granular access to Named Data structures in ICN

Claudio Marxer, Christian Tschudin; Improved Content Addressability Through
Relational Data Modeling and In-Network Processing Elements; ACM ICN 2017

!9

Named Function 
as a Service (NFaaS)

Michal‚ Krol, Ioannis Psaras; NFaaS: Named Function as a Service; ACM ICN 2017
!10

Decentralized
Computations

Michał Król , Ioannis Psaras; Decentralized Computations; 
Presentation at IRTF Proposed DINRG Interim Meeting; February 2018

!11

Robust Remote Method
Invocation in ICN

• ICN key properties

• No host addresses

• Receiver-driven: Interest-Data Exchange

• Flow balance: exactly one Data message per
Interest

• Path symmetry: Data follows reverse Interest path

• Interest rate controls flow bandwidth, congestion
etc.

• No consumer identities needed

• Consumer mobility through Interest soft state

!12

C

S

Robust Remote Method
Invocation in ICN

• Naive Approach I

• Map method invocation to
Interest-Data

• Method Parameters in Interest
message

• Result data is the Named Data
Object

!13

C

S

Interest: /s/rmi/funcA/
Data: <result object>

Robust Remote Method
Invocation in ICN

• Issues

• Interest messages: large parameter sets
in non-congestion-controlled messages

• Non-trivial computations will take longer
than Interest soft state in the network is
available

• Security: authenticating method
invocations?

• Robustness: computational overload
attacks

!14

C

S

Interest: /s/rmi/funcA/
Data: <result object>

Robust Remote Method
Invocation in ICN

• Naive Approach II

• Two Interest-Data Exchanges

1. Initiating method invocation

2. Collecting Results

• Problems

• Don’t know when result is ready

• Still same computational overload attack
and Interest congestion problems

!15

C

S

Interest: /s/rmi/funcA/
Data: ACK (handle XY)
.
.
.

Interest: /s/rmi/funcA/result/XY
Data: <result object>

Robust Remote Method
Invocation in ICN

• Naive Approach III

• Three Interest-Data Exchanges: Server
notifies client when result is ready

1. Initiating method invocation

2. “Result ready” notification

3. Client collects results

• Problems

• Still same computational overload attack
and Interest congestion problems

• Client needs to be globally reachable and
disclose its name

• Introducing producer mobility requirements
for clients

!16

C

S

Interest: /s/rmi/funcA/
Data: ACK (handle XY)

.

.
Interest: /c/funcA/XY/data-ready

Data: ACK
Interest: /s/rmi/funcA/result/XY

Data: <result object>

Robust Remote Method
Invocation in ICN

• Remote Method Invocation in ICN proposal

• Decoupling application (server) time from network
time

• State in network is ephemeral & soft — RTT
timeframe…

• Application/processing happens in different
timeframes — should not be constrained by
network

• Idiomatic ICN parameter data retrieval

• Server retrieves parameters (and authentication
credentials) from client

• Reducing surface for overload attacks

!17

Client Server

1) RMI Initiation

3) RM Execution

3) Result Retrieval

!18

Client ServerNetwork

I1: RMI Interest

I1: RMI Interest

I2: Clie
nt Data

Interes
t

I2: Clie
nt Data

Interes
t

D2: Client Data

D2: Client Data

D1: RM
I Data

D1: RM
I Data

Client Server

1) RMI Initiation

3) RM Execution

3) Result Retrieval

Robust Remote Method
Invocation in ICN

Server checks function name 
and requests client authentication 
and function parameters.

Server verifies client credentials 
and processes input parameters.

Server commits processing 
resources and returns a handle for 
the result data.

I1 RMI Interest signals client handle to 
network. 

Used to install ephemeral reverse forwarding 
state for I2 exchange (and to extend timers 
for I1 pending Interest state).

Note: I1/I2/D2 sequence could also be used 
to piggyback CCNxKey exchange (TLS-1.3 equivalent)

Additional Forwarder Behavior

!19

• I1 Interest

• Signals invocation-specific client
name (non-globally routable) to
network and server

• Creates emphemeral FIB-entry for
client name for later I2 exchange

• I2 Interest

• Follow path per ephemeral FIB entries

• Extends timer for I1 PIT entries

Client Server

Implementation
Considerations

• Forwarding tables normally optimized for read access

• RICE is modifying FIBs at line rate

• Different approaches

• Chose appropriate access algorithms with good write
performs and no read/write locks

• Separate data structures for temporary RICE FIB entries

• Could use name prefix convention to help forwarder
making this lookup efficient

!20

!21

Identifies individual
compute instance

!22

Thunks and Short/Long-
Lasting Computations

• Duration of computations sometime unpredictable

• Server could estimate duration in I1 DATA message
(when referring client to thunk)

• For short computation (or for returning pre-computed
results) one could consider return the results directly in
the I2 DATA message.

• Sometimes computations can take longer than
expected

• App-layer NACK messages?

• Telling client to “call again later”

• Have to avoid interference with caching

• Currently not specified in draft

!23

Referentially Transparent
Functions and Caching

• INTEREST for function name results in DATA
message that contains thunk name

• Could be cacheable and re-used (if DATA
message not encrypted)

• Should not be done if authorization is
required

• INTEREST for thunk name results in DATA
message with computation result

• Could be cacheable

• However: thunk name specifies
individual compute instance

• Forwarding hints for linking I1 function
names to produced data?

!24

RICE ICNRG Draft
• Captures protocol and node behavior specification parts from (longer) RICE paper (see

ACM ICN-2018)

• Intended as basis for interoperable RICE implementations (needs some more work)

• Intended as a basis for “everything NFN”

• Also function chaining, distributed computing, distributed data structures

• Cf. “Compute-First Networking” (COIN meeting on Friday)

!25

Edge PlatformMobile Phone Internet Data Center

Application
Server

AR UX F1

Future Work

• Explore referentially transparent functions and caching
more

• Understand interaction with other ICN extensions (e.g.,
MAP-ME, KITE)

• RICE as underlay for some existing distributed computing
frameworks

• More experiments

!26

