Model-driven & AI-Enabled Inter-Cloud Optimization

Architecture and Benefits

Ramki Krishnan
Introduction

• What did we talk about so far?
 • Model-driven & AI-Enabled Inter-Cloud Optimization
 • 5G/Edge Computing Use Cases – Dilip Krishnaswamy

• Let us talk about the architectural requirements
End-to-end Reference Architecture – ONAP Perspective

Focus: Interfaces between Management/Orchestration Instances

SO in Central/ONAP has e2e Service Template

Partner Domains are ‘federated’ with SP domain

This diagram is discussion in progress and not final
Architecture - What do we need? (1)

• Centralized Resource Management/Optimization
 • 1000’s of Clouds
 • Probabilistic Decisioning
 • Multiple Solution Choices – Aggregate Data for scale, Data Collection time lag etc.
 • Several Constraints, need flexibility to easily add new constraints
 • Cost (Partner Cloud, Private Cloud etc.), Service SLA (Latency etc.)
• Data Sources are often Aggregates, examples below
 • Partner/Public Cloud -- Cloud Region & Tenant Resource (Compute/Network/Storage) Available Capacity & Utilization; Cloud Region Energy Utilization
 • Private Cloud -- Above + Cluster Capacity/Utilization etc.
• Policies are often soft constraints, examples below
 • Find Cloud Regions(s) with least resource/energy utilization, least cost etc.
• Automation Intelligence (AI) through Machine Learning (ML)
 • Use ML (non-linear regression etc.) techniques on operational data to predict the thresholds for soft/hard constraints
 • Update the thresholds for soft/hard constraints in a closed-loop operation

Discussion in Progress: Edge Automation Through ONAP WG (https://wiki.onap.org/display/DW/Edge+Automation+through+ONAP)
Architecture - What do we need? (2)

• Edge Resource Management/Optimization
 • 1-10 Clouds
 • Accurate Decisioning
 • Single Solution Choice
 • Data Sources are Atomics, examples below
 • Partner/Public Cloud -- Workload (VM/Container) Resource (Compute/Network/Storage) Available Capacity & Utilization etc.
 • Private Cloud -- Above + Host Capacity/Utilization etc.
 • Inter-cloud latency, bandwidth etc.
 • Policies are often hard constraints, examples below
 • Find Cloud Regions(s) with SR-IOV support
 • Automation Intelligence (AI) through Machine Learning (ML)
 • Same as Central Resource Management/Optimization
 • Note: For some deployments, this function could be combined with the central component

Discussion in Progress: Edge Automation Through ONAP WG (https://wiki.onap.org/display/DW/Edge+Automation+through+ONAP)
Resource Management/Optimization and Related Components

- Designer & Developer friendly Domain-Specific Modelling Language for Service Placement/Scheduling Policy
- Address Central/Edge Resource Management/Optimization Requirements
- Masks the Mathematical complexity of optimization algorithms through Modelling
- Flexibility to add Custom optimizers especially for Edge Resource Management/Optimization
- Drive Service Creation Agility for 5G, Edge Computing etc.

Note: This is an exemplary architectural framework/implementation choice
Upcoming Talks

• “Recent Trends in Constraint Optimization and Satisfaction” -- Nina Narodytska

• “SCOR: Software-defined Constraint Optimal Routing platform for SDN” – Siamak Layeghy
 • Model-driven Minizinc application for constrained-based Routing