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Overview 

• Common	Client	Libraries	(CCL)	
• PSync	
• Common	Name	Library	(CNL)	
• NDN-RTC	
• Quick	summary	of	recent	research	progress	
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What are the Common Client Libraries (CCL)? 

•  Enable	client	applications	to	use	NDN	in	C++,	Python,	JavaScript,	Java,	.NET	
•  Common	API	across	languages:	http://named-data.net/doc/ndn-ccl-api		
•  Interest/Data,	signatures,	encryption,	transports,	app	utilities,	unit	tests,	examples	
•  Track	ndn-cxx	research	(security,	NAC,	NDN	protocols,	NFD	interaction)	
•  Backwards	compatibility,	platform	flexibility	for	development	stability	
•  Used	in	NDN-RTC,	BMS,	mHealth,	neighborhood	network,	web	page	apps,	ICE-AR	
•  Specialized	libraries:	NDN-CPP	Lite	(Arduino),	Imp,	Android,	browser	speedups	
•  Stats	(total):	10,771	commits,	277	closed	issues,	79	pull	requests,	80	forks	



Example 

face = Face("memoria.ndn.ucla.edu") 

name = Name("/ndn/edu/ucla/remap/demo/ndn-js-test/hello.txt/%FDU%8D%9DM") 

def onData(interest, data): 

    print(data.content.toRawStr()) 

face.expressInterest(name, onData) 



CCL Features 

•  Certificate	signing/validating	–	RSA,	ECDSA,	HMAC	
•  Configurable	cert	chain	policies,	regex	name	matching	
•  Flexible	public/private	key	database	API	
•  Signed	Interests	–	verify	with	same	API	as	certs	
•  Name-base	access	control	(AES	encryption,	RSA	key	protection)	
• MemoryContentCache,	SegmentFetcher	
•  Optional	thread-safe	network	I/O	
•  Configurable	wire	format	(see	below)	
•  ChronoSync,	PSync	(see	below)	
•  Unit	tests,	example	programs	



CCL wire format abstraction 

• API	is	not	hard-wired	to	one	wire	format	
•  Enable	backwards	compatibility	if	running	with	old	forwarders	

WireFormat.setDefaultWireFormat(Tlv0_1WireFormat.get()) 

• Can	specify	on	ad	hoc	basis	if	sending	to	a	various	networks	
face.expressInterest(name, onData, Tlv0_1WireFormat.get())	

• Was	used	for	transition	from	CCN	0.x	
• Plans	to	support	other	ICN	wire	formats	



CCL – Next steps 

• NDN	wire	format	v0.3	(with	backwards	compatibility)	
•  Typed	name	components	
•  Removed	(most)	Interest	selectors	
•  Interest	hop	count	
•  Interest	defaults	to	exact	name		(optional	CanBePrefix)	
•  Extra	application	parameters	in	the	Interest	
•  Explicit	fields	for	signed	interests	(instead	of	using	name	components)	

• New	wire	formats	
•  Support	new	network	autoconfig	protocols	



What is PSync? 

• Developed	as	improvement	to	ChronoSync	
• Used	in	NLSR	to	sync	routes	on	the	NDN	test	bed	
• Part	of	the	CCL	
•  Invertible	Bloom	filter	of	a	set	of	hashed	names	

•  Send	interest	with	my	IBF,	receive	interests	with	others’	IBF	
•  Stable	state:	Everyone	sends	the	same	IBF	–	Interest	aggregation,	no	Data	
•  Update:	I	receive	a	different	IBF	with	missing	names	and	provide	in	reply	Data	
•  IBF	efficiently	updates	a	set	difference	of	~275	names	

•  Eventual	consistency	from	pairwise	updates	–	broadcast	not	needed	
• Option	to	subscribe	to	partial	namespace	updates	



Example PSync app 
 	
face = Face()  
def onNamesUpdate(names):	
    print("Got names, starting with " + names[0].toUri())	
 
updateSize = 80 
pSync = FullPSync2017(updateSize, face, Name("/sync"), onNamesUpdate)	
pSync.publishName(Name(”/edu/ucla/jefft/paper.txt"))	
 	



PSync – Next steps 

•  Implement	in	Python,	JavaScript,	Java	(currently	in	C++)	
• Use	as	native	sync	for	the	Common	Name	Library	(see	below)	
•  Stress	test	“eventual	consistency”	without	broadcast	
•  Support	partial	PSync	(waiting	for	use	case)	
• NDN	Project:	A	Quick	Summary	of	Recent	Progress	



What is the Common Name Library (CNL)? 

•  Library	enabling	applications	to	work	with	hierarchical,	named	data	collections.	
•  Namespace	object	(root	and	child	nodes)	
•  Application	interacts	with	a	Namespace	node	(attach	handlers,	receive	notifications)	

•  Provides	a	lightweight	way	to	integrate	various:	
•  Sync	mechanisms	(i.e.,	PSync,	vector	sync)	
•  Data	access	patterns	(i.e.,	Consumer/Producer	API,	fetch	latest),	
•  Publishing	models	(i.e.,	publish/subscribe,	in-memory	content	cache),	
•  Complex	namespace	queries	/	pattern	matching	(i.e.,	regexp,	wildcards),	
•  Triggered	data	generation	(supporting	security)	

•  Currently	using	in	ICE-AR	mobile	client	application	
(No	interest-data	exchange	exposed	to	developers	of	that	app.)		

•  Segmented	content	with	a	Meta	packet	and	versioning	
•  Built-in	encode/decode,	encrypt/decrypt,	sign/verify	as	part	of	the	pipeline	
•  New	names	added	to	the	Namespace	tree	through	PSync,	app	is	notified	



CNL Motivation 

•  Provide	tools	for	working	with	namespaces	as	they	represent	collections,	in	an	
information-focused	rather	than	communication-oriented	way		
•  Assume	asynchronous	network	operations	will	be	used	to	sync	the	namespace	and	
consume/publish	objects	in	the	collection	
•  Insulate	non-networking	developers	from	communication	details	
•  Make	progress	towards	NDN	as	a	middleware-replacement	in	terms	of	high-level,	
application-facing	features,	but	try	to	stay	as	general	as	possible	
• Work	with	aggregate	application-specific	objects,	not	(segmented)	blobs	in	packets	
•  As	a	result,	support	namespace	synchronization	the	way	that	is	conceived	/	
described	at	a	high-level,	and	promote	it	as	an	application-level	concept	to	explore	
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Example segmented content consumer app 
 	
face = Face("memoria.ndn.ucla.edu")  
page = Namespace("/ndn/edu/ucla/remap/demo/ndn-js-test/named-data.net/project/ndn-ar2011.html/%FDX%DC5B")	
page.setFace(face)	
 	

def onSegmentedObject(namespace):	
    print("Got segmented object size " + str(namespace.obj.size()))	

  

page.setHandler(SegmentedObjectHandler(onSegmentedObject)).objectNeeded()	
 	



CNL Handlers 

•  Support	extensibility	
•  Set	Namespace	for	special	fetching,	publishing,	object	representation	
• Unified	API	for	developers	too	
•  https://github.com/named-data/PyCNL/blob/master/python/pycnl/segmented_object_handler.py		



Unified publisher/consumer 

•  objectNeeded()	–	From	application	(producer)	or	network	(consumer)	
•  Producer	

•  CNL	receives	Interest,	adds	to	PIT,	calls	OnObjectNeeded	(if	not	already	in	cache).	
•  Handler’s	OnObjectNeeded	answers	True.	
•  CNL	waits	for	application	to	produce	data	asynchronously.	
•  Application	calls	setObject().	
•  CNL	does	serialize/encrypt/sign	and	satisfies	PIT.	

•  Consumer	
•  Application	calls	OnObjectNeeded	for	a	Namespace	node.	
•  (All	handlers	answer	False.)	
•  CNL	does	Face.expressInterest	and	waits	for	Data.	
•  CNL	receives	Data,	does	verify/decrypt/deserialize	and	OnStateChanged(OBJECT_READY)	
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CNL – Next steps 

• High-performance	persistent	storage	
• Port	to	Java	and	JavaScript	
• More	applications	

•  Currently	used	in	augmented	reality	mobile	client	application	



NDN Data Packets
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What is NDN-RTC? 
•  NDN	C++	video	(HD)	streaming	library	for	macOS,	Ubuntu,	Android	
•  Sub-second	(~150ms)	latency	
•  Based	on	VP9	video	encoder	
•  Pipelining,	retransmission,	FEC	
•  Unified	consumer	for	live	and	stored	video	
•  Recent	updates	

•  RDR	protocol	for	getting	latest	data	
•  Remove	dependency	on	WebRTC	(though	no	echo	cancellation	pipeline	for	now)	
•  New	“Fast	Repo”	rocksdb-based	storage	
•  Moving	towards	generalized	approach	for	objects,	metadata,	etc.		

github.com/remap/ndnrtc	



Applications 
Current	

•  ICE-AR	(AR	browser	as	part	of	Intel/NSF	ICN-WEN)	
•  NDN-RTC	streams	phone	POV	video	for	edge	processing	(object,	face,	pose	recognition)	
•  processed	information	delivered	back	to	the	phone	to	enrich	phone’s	environmental	understanding	(deep	context)	

•  TouchNDN	(integration	with	Derivative’s	Touchdesigner)	
•  aiming	to	replace	NDI	for	live	video	production	
•  leverage	NDN	to	efficiently	disseminate	live	video	over	L2	(or	L3)	to	multiple	nodes	for	simultaneous	processing	&	storage	
•  nodes	integrate	“historical”	playback	from	repo	data	seamlessly	with	live	streaming,	for	scrubbing	real-time	streams	

•  Assorted	command	line	tools	

Previous	

•  ndncon/flume	–	pure	P2P	conferencing	app	
•  not	up	to	speed	with	latest	library	



Future Plans 

•  Scalable	video	coding	(VP9)	
•  Region-of-Interest-based	fetching	(360o	video	use	case)	
•  Volumetric	video	streaming	
•  Congestion	control,	when	apps	need	it	(based	on	Schneider	2016)	

=>	Looking	for	app	users	and	codebase	collaborators	



Recent NDN Code Release Updates 
• NFD	and	ndn-cxx	version	0.6.5	
• ndn-tools	version	0.6.3	
• NDN	Android	version	0.6.5-3	
•  Based	on	the	latest	version	of	NFD	(0.6.5)	
•  Including	updated	GUI	based	on	work	at	NDN	hackathon	

• ndnSIM	2.7	
•  Based	on	the	latest	released	versions	of	NS-3	(version	3.29)	and	NFD	(version	0.6.5)	
https://ndnsim.net/2.7/RELEASE_NOTES.html	

• Mini-NDN	0.40	
https://github.com/named-data/mini-ndn/releases/tag/v0.4.0	

• Named-data	Link	State	Routing	Protocol	(NLSR)	version	0.5.0	
https://named-data.net/doc/NLSR/0.5.0/RELEASE-NOTES.html	



Recent New Code Releases / In progress 
• pSync,	a	synchronization	protocol	for	NDN	

https://named-data.net/doc/PSync/0.1.0/RELEASE-NOTES.html	

• NDN	IoT	Package	
• Mini-NDN-WiFi	



NDN IoT Package 
•  An	NDN-based	IoT	framework	with	two	goals	
•  Localized	trust	and	automated	security	management	
•  Ease-of-use	IoT	software	development	kit	

•  Features	
•  Lightweight	NDN	software	stack	and	forwarder,	specifically		tuned	for	constrained	devices	
•  Seamless	integration	of	heterogenous	link	layer	protocols	(BLE,	WiFi,	IEEE	802.15.4,	etc.)	
•  Ease-of-use	high-level	APIs	for	bootstrapping,	service	discovery,	access	control,	and	schematized	
trust	management	

•  Easy	adaptation	to	new	IoT	hardware/software	platforms	

•  Ongoing	efforts	
•  Further	memory-saving	NDN	forwarder	design	
•  Demonstrative	application	to	illustrate	how	to	build	an	IoT	system	in	a	fundamentally	different	
way	from	today’s	IP-based	solutions	

• More	detailed	to	be	reported	@	next	IETF	



8th NDN Hackathon (March 8-10, 2019) 
http://8th-ndn-hackathon.named-data.net/hacks.html	

•  First	Prize:	NFD-Android	Enhancements		
•  Alex	Afanasyev,	Ju	Pan,	Sanjeev	Kaushik	Ramani,	Davide	Pesavento	

•  Second	Prize:	Sigcomm	Tutorial	App	(NDN-IoT	demo)	
•  Zhiyi	Zhang,	Xinyu	Ma,	Edward	Lu,	Yu	Guan,	Erynn-Marie	Phan,	Laqin	Fan	

•  Third	Prize	
•  Self-Learning	for	Ad	Hoc	Wireless	Networks	
•  Md	Ashiqur	Rahman,	Davide	Pesavento	

•  Sync	in	MANET	Library	+	Demo	
•  Tianxiang,	Zhaoning,	Spyros	

•  Addressing	ndncatchunks	Performance	Issues	
•  Klaus	Schneider,	Saurab	Dulal	



NDN Project at Google Summer of Code 
• https://summerofcode.withgoogle.com/organizations/6559809451589632/	



Publications/Presentations/Tech Reports 
•  “A	Note	on	Naming	and	Forwarding	Scalability	in	Named	Data	Networking”	Yu	Zhang	
et	al,	ICC	2019	Workshop,	May	2019	

•  “The	Role	of	Data	Repositories	in	Named	Data	Networking”	Lixia	Zhang	et	al,	ICC	
2019	Workshop,	May	2019	

•  “Proof	of	Authentication	for	Private	Distributed	Ledger“	Zhiyi	Zhang	et	al	,	NDSS	2019	
workshop,	Feb	2019	

•  “On	the	Granularity	of	Trie-based	Data	Structures	for	Name	Lookups	and	Updates“	
Chavoosh	Ghasemi	et	al,	to	appear	in	ACM/IEEE	Transactions	on	Networking	2019	

•  “
Packet	Forwarding	in	Named	Data	Networking	Requirements	and	Survey	of	
Solutions”	Zhuo	Li	et	al,	to	appear	in	IEEE	Communications	Surveys	&	Tutorials	2019	

•  “An	Overview	of	Security	Support	in	Named	Data	Networking”	Zhiyi	Zhang	et	al,		IEEE	
Communications	Magazine,	Nov	2018.	

Since	last	IETF	



How to learn more 

•  Common	Client	Library	(CCL)	
•  C++:	https://github.com/named-data/ndn-cpp		
•  Python:	https://github.com/named-data/PyNDN2		
•  JavaScript:	https://github.com/named-data/ndn-js		
•  Java:	https://github.com/named-data/jndn		
•  C#	(.NET	Framework):	https://github.com/named-data/ndn-dot-net		

•  PSync:	Scalable	Name-based	Data	Synchronization	for	Named	Data	Networking	
•  https://named-data.net/publications/scalable_name-based_data_synchronization/	

•  Common	Name	Library	(CNL)	
•  C++:	https://github.com/named-data/cnl-cpp		
•  Python:	https://github.com/named-data/PyCNL	

•  NDN-RTC:	https://github.com/remap/ndnrtc		


