

NDN Libraries

Progress and Plans

March	24,	2019	
Jeff	Thompson,	NDN	Team	
jefft0@remap.ucla.edu	

Overview

• Common	Client	Libraries	(CCL)	
• PSync	
• Common	Name	Library	(CNL)	
• NDN-RTC	
• Quick	summary	of	recent	research	progress	

2	

What are the Common Client Libraries (CCL)?

•  Enable	client	applications	to	use	NDN	in	C++,	Python,	JavaScript,	Java,	.NET	
•  Common	API	across	languages:	http://named-data.net/doc/ndn-ccl-api		
•  Interest/Data,	signatures,	encryption,	transports,	app	utilities,	unit	tests,	examples	
•  Track	ndn-cxx	research	(security,	NAC,	NDN	protocols,	NFD	interaction)	
•  Backwards	compatibility,	platform	flexibility	for	development	stability	
•  Used	in	NDN-RTC,	BMS,	mHealth,	neighborhood	network,	web	page	apps,	ICE-AR	
•  Specialized	libraries:	NDN-CPP	Lite	(Arduino),	Imp,	Android,	browser	speedups	
•  Stats	(total):	10,771	commits,	277	closed	issues,	79	pull	requests,	80	forks	

Example

face = Face("memoria.ndn.ucla.edu")

name = Name("/ndn/edu/ucla/remap/demo/ndn-js-test/hello.txt/%FDU%8D%9DM")

def onData(interest, data):

 print(data.content.toRawStr())

face.expressInterest(name, onData)

CCL Features

•  Certificate	signing/validating	–	RSA,	ECDSA,	HMAC	
•  Configurable	cert	chain	policies,	regex	name	matching	
•  Flexible	public/private	key	database	API	
•  Signed	Interests	–	verify	with	same	API	as	certs	
•  Name-base	access	control	(AES	encryption,	RSA	key	protection)	
• MemoryContentCache,	SegmentFetcher	
•  Optional	thread-safe	network	I/O	
•  Configurable	wire	format	(see	below)	
•  ChronoSync,	PSync	(see	below)	
•  Unit	tests,	example	programs	

CCL wire format abstraction

• API	is	not	hard-wired	to	one	wire	format	
•  Enable	backwards	compatibility	if	running	with	old	forwarders	

WireFormat.setDefaultWireFormat(Tlv0_1WireFormat.get())

• Can	specify	on	ad	hoc	basis	if	sending	to	a	various	networks	
face.expressInterest(name, onData, Tlv0_1WireFormat.get())	

• Was	used	for	transition	from	CCN	0.x	
• Plans	to	support	other	ICN	wire	formats	

CCL – Next steps

• NDN	wire	format	v0.3	(with	backwards	compatibility)	
•  Typed	name	components	
•  Removed	(most)	Interest	selectors	
•  Interest	hop	count	
•  Interest	defaults	to	exact	name		(optional	CanBePrefix)	
•  Extra	application	parameters	in	the	Interest	
•  Explicit	fields	for	signed	interests	(instead	of	using	name	components)	

• New	wire	formats	
•  Support	new	network	autoconfig	protocols	

What is PSync?

• Developed	as	improvement	to	ChronoSync	
• Used	in	NLSR	to	sync	routes	on	the	NDN	test	bed	
• Part	of	the	CCL	
•  Invertible	Bloom	filter	of	a	set	of	hashed	names	

•  Send	interest	with	my	IBF,	receive	interests	with	others’	IBF	
•  Stable	state:	Everyone	sends	the	same	IBF	–	Interest	aggregation,	no	Data	
•  Update:	I	receive	a	different	IBF	with	missing	names	and	provide	in	reply	Data	
•  IBF	efficiently	updates	a	set	difference	of	~275	names	

•  Eventual	consistency	from	pairwise	updates	–	broadcast	not	needed	
• Option	to	subscribe	to	partial	namespace	updates	

Example PSync app
 	
face = Face()
def onNamesUpdate(names):	
 print("Got names, starting with " + names[0].toUri())	

updateSize = 80
pSync = FullPSync2017(updateSize, face, Name("/sync"), onNamesUpdate)	
pSync.publishName(Name(”/edu/ucla/jefft/paper.txt"))	
 	

PSync – Next steps

•  Implement	in	Python,	JavaScript,	Java	(currently	in	C++)	
• Use	as	native	sync	for	the	Common	Name	Library	(see	below)	
•  Stress	test	“eventual	consistency”	without	broadcast	
•  Support	partial	PSync	(waiting	for	use	case)	
• NDN	Project:	A	Quick	Summary	of	Recent	Progress	

What is the Common Name Library (CNL)?

•  Library	enabling	applications	to	work	with	hierarchical,	named	data	collections.	
•  Namespace	object	(root	and	child	nodes)	
•  Application	interacts	with	a	Namespace	node	(attach	handlers,	receive	notifications)	

•  Provides	a	lightweight	way	to	integrate	various:	
•  Sync	mechanisms	(i.e.,	PSync,	vector	sync)	
•  Data	access	patterns	(i.e.,	Consumer/Producer	API,	fetch	latest),	
•  Publishing	models	(i.e.,	publish/subscribe,	in-memory	content	cache),	
•  Complex	namespace	queries	/	pattern	matching	(i.e.,	regexp,	wildcards),	
•  Triggered	data	generation	(supporting	security)	

•  Currently	using	in	ICE-AR	mobile	client	application	
(No	interest-data	exchange	exposed	to	developers	of	that	app.)		

•  Segmented	content	with	a	Meta	packet	and	versioning	
•  Built-in	encode/decode,	encrypt/decrypt,	sign/verify	as	part	of	the	pipeline	
•  New	names	added	to	the	Namespace	tree	through	PSync,	app	is	notified	

CNL Motivation

•  Provide	tools	for	working	with	namespaces	as	they	represent	collections,	in	an	
information-focused	rather	than	communication-oriented	way		
•  Assume	asynchronous	network	operations	will	be	used	to	sync	the	namespace	and	
consume/publish	objects	in	the	collection	
•  Insulate	non-networking	developers	from	communication	details	
•  Make	progress	towards	NDN	as	a	middleware-replacement	in	terms	of	high-level,	
application-facing	features,	but	try	to	stay	as	general	as	possible	
• Work	with	aggregate	application-specific	objects,	not	(segmented)	blobs	in	packets	
•  As	a	result,	support	namespace	synchronization	the	way	that	is	conceived	/	
described	at	a	high-level,	and	promote	it	as	an	application-level	concept	to	explore	

12	

Example segmented content consumer app
 	
face = Face("memoria.ndn.ucla.edu")
page = Namespace("/ndn/edu/ucla/remap/demo/ndn-js-test/named-data.net/project/ndn-ar2011.html/%FDX%DC5B")	
page.setFace(face)	
 	

def onSegmentedObject(namespace):	
 print("Got segmented object size " + str(namespace.obj.size()))	

page.setHandler(SegmentedObjectHandler(onSegmentedObject)).objectNeeded()	
 	

CNL Handlers

•  Support	extensibility	
•  Set	Namespace	for	special	fetching,	publishing,	object	representation	
• Unified	API	for	developers	too	
•  https://github.com/named-data/PyCNL/blob/master/python/pycnl/segmented_object_handler.py		

Unified publisher/consumer

•  objectNeeded()	–	From	application	(producer)	or	network	(consumer)	
•  Producer	

•  CNL	receives	Interest,	adds	to	PIT,	calls	OnObjectNeeded	(if	not	already	in	cache).	
•  Handler’s	OnObjectNeeded	answers	True.	
•  CNL	waits	for	application	to	produce	data	asynchronously.	
•  Application	calls	setObject().	
•  CNL	does	serialize/encrypt/sign	and	satisfies	PIT.	

•  Consumer	
•  Application	calls	OnObjectNeeded	for	a	Namespace	node.	
•  (All	handlers	answer	False.)	
•  CNL	does	Face.expressInterest	and	waits	for	Data.	
•  CNL	receives	Data,	does	verify/decrypt/deserialize	and	OnStateChanged(OBJECT_READY)	

NAME	
EXISTS	

INTEREST	
EXPRESSED	

DATA	
RECEIVED	 DECRYPTING	

OBJECT	READY	

OBJECT	TYPE	/	
NAME	

STRUCTURE	
KNOWN	

If	an	
aggregate	
object	with	

versioning,	for	
example	

OBJECT	READY	
BUT	STALE	

Existing	
listeners	

	

VALIDATING	
(ALL)	

VALIDATE	
SUCCESS	

(ANY)	
VALIDATE	
FAILURE	

WAITING	FOR	
DATA	

(ANY)	
DECRYPTION	

ERROR	

Child	data	received	
Interest	timeout	
Child	verification	error	
	

(ANY)	
INTEREST	
TIMEOUT	

Signing/validation	and	encryption/decryption	may	be	performed	
at	both	the	packet	and	object	level,	depending	on	the	object	type	

(ANY)	
INTEREST	
NETWORK	
NACK	

To	objectNeeded	

PRODUCING	
OBJECT	

An	
OnObjectNeeded	
answers	true	

All	
OnObjectNeeded	
answer	false	

ENCRYPTING	

(ANY)	
ENCRYPTION	

ERROR	

SIGNING	

(ANY)	
SIGNING	
ERROR	

Reply	to	
pending	
incoming	
Interests	

Where	to	store	child	
decrypted	content	Blobs	
before	deserializing	the	

parent	object?	

objectNeeded()	 SERIALIZING	

setObject()	

DESERIALIZING	

NDN-CNL: Name node state diagram
Integrating Interest/Data and Packet-/Prefix-level objects

CNL – Next steps

• High-performance	persistent	storage	
• Port	to	Java	and	JavaScript	
• More	applications	

•  Currently	used	in	augmented	reality	mobile	client	application	

NDN Data Packets

/<base-prefix>

<timestamp>

<stream-name>

<seq #> _gop

_latest _live

_meta<segment #> _manifest _meta

_parity

frame payload manifest payload

Content-Type = 'ndnrtc'

Timestamp

Content-Size

Other

gop pos, gop #

capture timestamp

frame type

complete frame

parity size

generation delay

<segment #>

FEC payload

<seq #>

start end

/<stream-prefix>/<seq#> /<stream-prefix>/<seq#>

<version #>

0

1

/<stream-prefix>/<seq#>

/<stream-prefix>/_gop/<seq#>

<version #>

timestamp

publish rate

WxH

bitrate

description

What is NDN-RTC?
•  NDN	C++	video	(HD)	streaming	library	for	macOS,	Ubuntu,	Android	
•  Sub-second	(~150ms)	latency	
•  Based	on	VP9	video	encoder	
•  Pipelining,	retransmission,	FEC	
•  Unified	consumer	for	live	and	stored	video	
•  Recent	updates	

•  RDR	protocol	for	getting	latest	data	
•  Remove	dependency	on	WebRTC	(though	no	echo	cancellation	pipeline	for	now)	
•  New	“Fast	Repo”	rocksdb-based	storage	
•  Moving	towards	generalized	approach	for	objects,	metadata,	etc.		

github.com/remap/ndnrtc	

Applications
Current	

•  ICE-AR	(AR	browser	as	part	of	Intel/NSF	ICN-WEN)	
•  NDN-RTC	streams	phone	POV	video	for	edge	processing	(object,	face,	pose	recognition)	
•  processed	information	delivered	back	to	the	phone	to	enrich	phone’s	environmental	understanding	(deep	context)	

•  TouchNDN	(integration	with	Derivative’s	Touchdesigner)	
•  aiming	to	replace	NDI	for	live	video	production	
•  leverage	NDN	to	efficiently	disseminate	live	video	over	L2	(or	L3)	to	multiple	nodes	for	simultaneous	processing	&	storage	
•  nodes	integrate	“historical”	playback	from	repo	data	seamlessly	with	live	streaming,	for	scrubbing	real-time	streams	

•  Assorted	command	line	tools	

Previous	

•  ndncon/flume	–	pure	P2P	conferencing	app	
•  not	up	to	speed	with	latest	library	

Future Plans

•  Scalable	video	coding	(VP9)	
•  Region-of-Interest-based	fetching	(360o	video	use	case)	
•  Volumetric	video	streaming	
•  Congestion	control,	when	apps	need	it	(based	on	Schneider	2016)	

=>	Looking	for	app	users	and	codebase	collaborators	

Recent NDN Code Release Updates
• NFD	and	ndn-cxx	version	0.6.5	
• ndn-tools	version	0.6.3	
• NDN	Android	version	0.6.5-3	
•  Based	on	the	latest	version	of	NFD	(0.6.5)	
•  Including	updated	GUI	based	on	work	at	NDN	hackathon	

• ndnSIM	2.7	
•  Based	on	the	latest	released	versions	of	NS-3	(version	3.29)	and	NFD	(version	0.6.5)	
https://ndnsim.net/2.7/RELEASE_NOTES.html	

• Mini-NDN	0.40	
https://github.com/named-data/mini-ndn/releases/tag/v0.4.0	

• Named-data	Link	State	Routing	Protocol	(NLSR)	version	0.5.0	
https://named-data.net/doc/NLSR/0.5.0/RELEASE-NOTES.html	

Recent New Code Releases / In progress
• pSync,	a	synchronization	protocol	for	NDN	

https://named-data.net/doc/PSync/0.1.0/RELEASE-NOTES.html	

• NDN	IoT	Package	
• Mini-NDN-WiFi	

NDN IoT Package
•  An	NDN-based	IoT	framework	with	two	goals	
•  Localized	trust	and	automated	security	management	
•  Ease-of-use	IoT	software	development	kit	

•  Features	
•  Lightweight	NDN	software	stack	and	forwarder,	specifically		tuned	for	constrained	devices	
•  Seamless	integration	of	heterogenous	link	layer	protocols	(BLE,	WiFi,	IEEE	802.15.4,	etc.)	
•  Ease-of-use	high-level	APIs	for	bootstrapping,	service	discovery,	access	control,	and	schematized	
trust	management	

•  Easy	adaptation	to	new	IoT	hardware/software	platforms	

•  Ongoing	efforts	
•  Further	memory-saving	NDN	forwarder	design	
•  Demonstrative	application	to	illustrate	how	to	build	an	IoT	system	in	a	fundamentally	different	
way	from	today’s	IP-based	solutions	

• More	detailed	to	be	reported	@	next	IETF	

8th NDN Hackathon (March 8-10, 2019)
http://8th-ndn-hackathon.named-data.net/hacks.html	

•  First	Prize:	NFD-Android	Enhancements		
•  Alex	Afanasyev,	Ju	Pan,	Sanjeev	Kaushik	Ramani,	Davide	Pesavento	

•  Second	Prize:	Sigcomm	Tutorial	App	(NDN-IoT	demo)	
•  Zhiyi	Zhang,	Xinyu	Ma,	Edward	Lu,	Yu	Guan,	Erynn-Marie	Phan,	Laqin	Fan	

•  Third	Prize	
•  Self-Learning	for	Ad	Hoc	Wireless	Networks	
•  Md	Ashiqur	Rahman,	Davide	Pesavento	

•  Sync	in	MANET	Library	+	Demo	
•  Tianxiang,	Zhaoning,	Spyros	

•  Addressing	ndncatchunks	Performance	Issues	
•  Klaus	Schneider,	Saurab	Dulal	

NDN Project at Google Summer of Code
• https://summerofcode.withgoogle.com/organizations/6559809451589632/	

Publications/Presentations/Tech Reports
•  “A	Note	on	Naming	and	Forwarding	Scalability	in	Named	Data	Networking”	Yu	Zhang	
et	al,	ICC	2019	Workshop,	May	2019	

•  “The	Role	of	Data	Repositories	in	Named	Data	Networking”	Lixia	Zhang	et	al,	ICC	
2019	Workshop,	May	2019	

•  “Proof	of	Authentication	for	Private	Distributed	Ledger“	Zhiyi	Zhang	et	al	,	NDSS	2019	
workshop,	Feb	2019	

•  “On	the	Granularity	of	Trie-based	Data	Structures	for	Name	Lookups	and	Updates“	
Chavoosh	Ghasemi	et	al,	to	appear	in	ACM/IEEE	Transactions	on	Networking	2019	

•  “
Packet	Forwarding	in	Named	Data	Networking	Requirements	and	Survey	of	
Solutions”	Zhuo	Li	et	al,	to	appear	in	IEEE	Communications	Surveys	&	Tutorials	2019	

•  “An	Overview	of	Security	Support	in	Named	Data	Networking”	Zhiyi	Zhang	et	al,		IEEE	
Communications	Magazine,	Nov	2018.	

Since	last	IETF	

How to learn more

•  Common	Client	Library	(CCL)	
•  C++:	https://github.com/named-data/ndn-cpp		
•  Python:	https://github.com/named-data/PyNDN2		
•  JavaScript:	https://github.com/named-data/ndn-js		
•  Java:	https://github.com/named-data/jndn		
•  C#	(.NET	Framework):	https://github.com/named-data/ndn-dot-net		

•  PSync:	Scalable	Name-based	Data	Synchronization	for	Named	Data	Networking	
•  https://named-data.net/publications/scalable_name-based_data_synchronization/	

•  Common	Name	Library	(CNL)	
•  C++:	https://github.com/named-data/cnl-cpp		
•  Python:	https://github.com/named-data/PyCNL	

•  NDN-RTC:	https://github.com/remap/ndnrtc		

