
“Push it” - update 1

Christian Tschudin, University of Basel
July 21, 2019
ICNRG interim meeting, IETF Montreal

Disclaimer
This talk is only indirectly about Secure Scuttlebutt (SSB) 
and other decent(ralized) projects per se, see 
e.g. the Berlin DTN meeting in May 2019.

 
 
 
 

Instead, this talk is about push-based communication 
(which surprised SSB proponents because they thought they were pull-based)

History of this “Push”-Thread
• Sep 2018 - ICN2018-Panel: “Pull() vs Push() is an ill posed problem” 

I introduced SSB, its use of append-only logs, and remained the only person on the
panel in favor of push, for unclear reasons at that time

• Feb 2019 - submission of a CCR editorial note “A Broadcast-only communication
model”, regarding the relation between PUSH and append-only logs

• Mar 2019 - presentation at ICNRG meeting in Prague (with a lot of interrupts) 
“PUSH is for gods, PULL is for mortals”

• May 2019 - CCR-online editorial note goes online (1)

• July 2019 - recap and new insights

https://ccronline.sigcomm.org/2019/a-broadcast-only-communication-model-based-on-replicated-append-only-logs/(1)

https://ccronline.sigcomm.org/2019/a-broadcast-only-communication-model-based-on-replicated-append-only-logs/

Overview
1. Mindset: cumulative immutable data and the “freshness frontier”

2. Recap of CCR-online note: broadcast-only through append-only logs

3. The need for push (not contested if it’s at app level)

4. Two problems of emulating “app-level push()” using “net-level pull()”

5. Extrapolations: 
- push and Shannon entropy 
- in-network memory is not optional

1) Cumulative Immutable Content
Humanity’s generated content so far, named via some hash fct

Image of the hash function (e.g. 2256 distinct values)

Universe of all content items (to be folded onto the hash’s image)

1) Cumulative Immutable Content

Black set (hash-named content) grows over time, has to spread in space:

Humanity’s generated content so far, named via some hash fct

Image of the hash function (e.g. 2256 distinct values)

Universe of all content items (to be folded onto the hash’s image)

1) Cumulative Immutable Content

Black set (hash-named content) grows over time, has to spread in space:

Humanity’s generated content so far, named via some hash fct

Image of the hash function (e.g. 2256 distinct values)

Universe of all content items (to be folded onto the hash’s image)

number of hash names 
(size of generated content space)0%

100% 
(full replication)

replicated

pending 
repl. 

number of hash-named contents, as of today

data (freshness) frontierspace

1’) Cumulative Immutable Content
• Growing set of hash-named content

• Accumulation so far: WORM (write-one-read-many)

• Frontier: HEAD (à la Git, also called “tips” in IOTA)

WORM HEAD

1’) Cumulative Immutable Content
• Growing set of hash-named content

• Accumulation so far: WORM (write-one-read-many)

• Frontier: HEAD (à la Git, also called “tips” in IOTA)

• Prototypical WORM: hash-chain (append-only log) 
prototypical HEAD: hash (or seq#) of newest entry 
 
 
 

WORM HEAD

1’) Cumulative Immutable Content
• Growing set of hash-named content

• Accumulation so far: WORM (write-one-read-many)

• Frontier: HEAD (à la Git, also called “tips” in IOTA)

• Prototypical WORM: hash-chain (append-only log) 
prototypical HEAD: hash (or seq#) of newest entry 
 
 
 

WORM HEAD
ICN2018 panel

CCR submission
ICNRG Prague

CCR note online
ICNRG Montreal

this talk

1’) Cumulative Immutable Content
• Growing set of hash-named content

• Accumulation so far: WORM (write-one-read-many)

• Frontier: HEAD (à la Git, also called “tips” in IOTA)

• Prototypical WORM: hash-chain (append-only log) 
prototypical HEAD: hash (or seq#) of newest entry 
 
 
 

• "Single-author append-only event log”: SSB’s basis
WORM HEAD

ICN2018 panel
CCR submission

ICNRG Prague
CCR note online

ICNRG Montreal

this talk

2) Broadcast-only communication
• Reliable global broadcast: desirable networking service, used in: 

secure scuttlebutt, cert transparency (CT), Google Pub/Sub, Amazon SNS

• Global broadcast must be built from local broadcast range 
(due to limited reach, but also to handle offline situations)

• Global broadcast needs relays with memory, will propagate content 
as soon as possible, and only once 
 

• Append-only log “induced” by 
global broadcast networking task

3) The need for global push()
• Known under many names: SYNC, NOTIFY, PUB/SUB…

• Recent example from the NDN app space 
 
 
 
 
 

• Callback handlers as a prevailing coding style, triggered by some notification.

3) The need for global push()
• Known under many names: SYNC, NOTIFY, PUB/SUB…

• Recent example from the NDN app space 
 
 
 
 
 

• Callback handlers as a prevailing coding style, triggered by some notification.

• Q: How to implement the notification? —> Pub/Sub library over pull-based ICN, 
long-lived interest… But once satisfied, things become "interesting”

4) Two problems of emulated push()
• Problem 0: 

routing to multiple replicas, getting the freshest content fastest 
… see ICNRG Prague talk, case still needs to be written up, 
basically can only be solved by (global) interest flooding …

• Problem 1: pull leads to “inter-notification gap >= RTT”

• Problem 2: pull leads to “recursion corridors"

4a) Inter-notification gap >= RTT
• Emulating app-level PUSH 

with network-level PULL

• Long-lived interest used to “arm” a
notification handler

t

subscriber publisher (“pusher”)

long-lived interest

event 1

notification 1

callback

4a) Inter-notification gap >= RTT
• Emulating app-level PUSH 

with network-level PULL

• Long-lived interest used to “arm” a
notification handler

• After the event: must re-arm

t

subscriber publisher (“pusher”)

long-lived interest

event 1

notification 1

callback

4a) Inter-notification gap >= RTT
• Emulating app-level PUSH 

with network-level PULL

• Long-lived interest used to “arm” a
notification handler

• After the event: must re-arm

t

subscriber publisher (“pusher”)

long-lived interest

event 1

notification 1

callback re-arm remote trigger

4a) Inter-notification gap >= RTT
• Emulating app-level PUSH 

with network-level PULL

• Long-lived interest used to “arm” a
notification handler

• After the event: must re-arm

t

subscriber publisher (“pusher”)

long-lived interest

event 1

notification 1

callback re-arm remote trigger
event 2

notification 2

4a) Inter-notification gap >= RTT
• Emulating app-level PUSH 

with network-level PULL

• Long-lived interest used to “arm” a
notification handler

• After the event: must re-arm

t

subscriber publisher (“pusher”)

long-lived interest

event 1

notification 1

callback re-arm remote trigger
event 2

notification 2

>= 1 RTT

4a) Inter-notification gap >= RTT
• Emulating app-level PUSH 

with network-level PULL

• Long-lived interest used to “arm” a
notification handler

• After the event: must re-arm

• leads to >= 1 RTT inter-notification gap 
—> this is a rate limiter

t

subscriber publisher (“pusher”)

long-lived interest

event 1

notification 1

callback re-arm remote trigger
event 2

notification 2

>= 1 RTT

4a) Inter-notification gap >= RTT
• Emulating app-level PUSH 

with network-level PULL

• Long-lived interest used to “arm” a
notification handler

• After the event: must re-arm

• leads to >= 1 RTT inter-notification gap 
—> this is a rate limiter

• Moreover, could loose events: 
- events during unarmed interval 
- due to unreliable PULL

t

subscriber publisher (“pusher”)

long-lived interest

event 1

notification 1

callback re-arm remote trigger
event 2

notification 2

>= 1 RTT

4a) Inter-notification gap >= RTT
• Emulating app-level PUSH 

with network-level PULL

• Long-lived interest used to “arm” a
notification handler

• After the event: must re-arm

• leads to >= 1 RTT inter-notification gap 
—> this is a rate limiter

• Moreover, could loose events: 
- events during unarmed interval 
- due to unreliable PULL

• Protection via publisher-side queue (log…)t

subscriber publisher (“pusher”)

long-lived interest

event 1

notification 1

callback re-arm remote trigger
event 2

notification 2

>= 1 RTT

4b) Recursion corridors
• Context: COIN (compute-in-the-net)

• Consider chain of calls f(g(h(x))) 
executed at FRA, YUL and SFO, 
requested from LAX

g
h f

LAX

SFO
FRA

YUL

4b) Recursion corridors
• Context: COIN (compute-in-the-net)

• Consider chain of calls f(g(h(x))) 
executed at FRA, YUL and SFO, 
requested from LAX

g
h f

LAX

SFO
FRA

YUL

g
h f

LAX

SFO
FRA

YUL

Data

Interest

PULL-world

4b) Recursion corridors
• Context: COIN (compute-in-the-net)

• Consider chain of calls f(g(h(x))) 
executed at FRA, YUL and SFO, 
requested from LAX

• PULL creates a "recursion corridor” 
(flashback: “mobile IP" and triangular routing…)

g
h f

LAX

SFO
FRA

YUL

g
h f

LAX

SFO
FRA

YUL

Data

Interest

PULL-world

4b) Recursion corridors
• Context: COIN (compute-in-the-net)

• Consider chain of calls f(g(h(x))) 
executed at FRA, YUL and SFO, 
requested from LAX

• PULL creates a "recursion corridor” 
(flashback: “mobile IP" and triangular routing…)

g
h f

LAX

SFO
FRA

YUL

g
h f

LAX

SFO
FRA

YUL

Data

Interest

PULL-world

g
h f

LAX

SFO
FRA

YUL

orchestrate notify

PUSH world

x

h(x) g(h(x))

f(g(h(x)))

4b) Recursion corridors
• Context: COIN (compute-in-the-net)

• Consider chain of calls f(g(h(x))) 
executed at FRA, YUL and SFO, 
requested from LAX

• PULL creates a "recursion corridor” 
(flashback: “mobile IP" and triangular routing…)

• In a PUSH world: only two Atlantic-crossings in the
critical path (compared to four when using PULL)

g
h f

LAX

SFO
FRA

YUL

g
h f

LAX

SFO
FRA

YUL

Data

Interest

PULL-world

g
h f

LAX

SFO
FRA

YUL

orchestrate notify

PUSH world

x

h(x) g(h(x))

f(g(h(x)))

4b) Recursion corridors
• Context: COIN (compute-in-the-net)

• Consider chain of calls f(g(h(x))) 
executed at FRA, YUL and SFO, 
requested from LAX

• PULL creates a "recursion corridor” 
(flashback: “mobile IP" and triangular routing…)

• In a PUSH world: only two Atlantic-crossings in the
critical path (compared to four when using PULL)

• PUSH world: pipelining (no rate-limiting)

g
h f

LAX

SFO
FRA

YUL

g
h f

LAX

SFO
FRA

YUL

Data

Interest

PULL-world

g
h f

LAX

SFO
FRA

YUL

orchestrate notify

PUSH world

x

h(x) g(h(x))

f(g(h(x)))

4b) Recursion corridors
• Context: COIN (compute-in-the-net)

• Consider chain of calls f(g(h(x))) 
executed at FRA, YUL and SFO, 
requested from LAX

• PULL creates a "recursion corridor” 
(flashback: “mobile IP" and triangular routing…)

• In a PUSH world: only two Atlantic-crossings in the
critical path (compared to four when using PULL)

• PUSH world: pipelining (no rate-limiting)

• Corridors can be fixed in the PULL model (—> new
emulation library, special name prediction tricks) 
but rate limitation will remain

g
h f

LAX

SFO
FRA

YUL

g
h f

LAX

SFO
FRA

YUL

Data

Interest

PULL-world

g
h f

LAX

SFO
FRA

YUL

orchestrate notify

PUSH world

x

h(x) g(h(x))

f(g(h(x)))

5) Summary and Extrapolations
• I argue in favor of PUSH-of-append-only-logs 

doesn’t require infinite bandwidth: content frontier can be slowed down
(backpressure)

5) Summary and Extrapolations
• I argue in favor of PUSH-of-append-only-logs 

doesn’t require infinite bandwidth: content frontier can be slowed down
(backpressure)

• Replicating append-only logs is about Shannon entropy: 
- Heat entropy = “Verwandlungsgehalt” (transformational content) 
- Information entropy = “delta” 
Once new content is replicated (the world has reached the same temp)

5) Summary and Extrapolations
• I argue in favor of PUSH-of-append-only-logs 

doesn’t require infinite bandwidth: content frontier can be slowed down
(backpressure)

• Replicating append-only logs is about Shannon entropy: 
- Heat entropy = “Verwandlungsgehalt” (transformational content) 
- Information entropy = “delta” 
Once new content is replicated (the world has reached the same temp)

• Unlike the NDN mantra that cache is an optional optimization: 
PUSH and storage go together: in-net storage is a MUST 
—> towards massive memory nets

