
ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 1

ALTO Incremental Updates
using HTTP/2

Y. Richard Yang

April 21, 2020

ALTO Interim Meeting

ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 2

Outline
• ALTO SSE review
• Initial design
• Discussion on next step

ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 3

Review: ALTO SSE Big Picture
• Goals: (1) push updates, (2) compact/incr encoding of

updates; (3) dynamic stream control
• Realization: two services

– Update service
(send update messages)

• Data updates
• Control updates

– Stream control service
• Add/remove resources

receiving updates

ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 4

ALTO SSE as HTTP/1.x-Compatible Design

• Issue 1: Allow dynamic addition/removal of
resources (called substreams) receiving updates,
but HTTP/1.x allows sending only one request
at a time

• Solution: two services
client update server stream control

(SC) server
CU: SC uri

CU: Control Update
DU: Data Update

DU

Add/remove

DU/CU

ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 5

ALTO SSE as HTTP/1.x-Compatible Design
• Issue 2: Need to multiplex multiple logical data streams (control

update, updates for different resources) with different media
types (full encoding, different incr) from update server to client

• Solution: adapt existing server-sent events (SSE)
– event: media-type [',’ data-id]

• media-type
– control update: application/alto-updatestreamcontrol+json

» first update must be control update, w/ control URI
– data update: full replacement (e.g., application/alto-networkmap+json) or

incremental encoding media (e.g., application/merge-patch+json)
• data-id (only for data update): substream-id [. content-ID for multipart/related]

– Consider the whole connection as an update stream, and hence each data
update stream and the control update stream are considered as individual
sub-streams

– data: JSON object of the given media type in the event field

ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 6

HTTP/1.x Update Stream Serialization

Control update

Substream: data update for request 1

Substream: data update for request 2

Substream: data update for request n

Among update messages

• Intra-substream
– Update i based on Update i-1

delivered reliably, in order

• Inter-substream
(e.g., CostMap depends on
NetMap):

– Conceptually can be asynchronous
substreams of events, as a client
can use the dependent tags to
compute update ordering

– SSE recommends that the server
send being-dependent updates
(e.g., NetMap) before sending
dependent (e.g., CostMap) updates

ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 7

Benefits of HTTP/2 Based Design

• Leverage the more modern HTTP transport
– multiplexing

• SSE enforces a single serialization of all substreams
– Assume: two independent network maps have changes

at the same time, SSE will still need to serialize the
updates (potentially longer update latency)

• HTTP/2 to allow concurrent updates
– bi-directional

• Instead of two services, we may reduce to a single service
– More efficiency (e.g., header compression) and flexible control

(e.g., priority)

ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 8

Initial Design (Maximize Compatibility)

• A single HTTP/2 connection: stream control (add) and data update

of each resource <-> HTTP/2 stream

– Request: client picks HTTP/2 stream-ID (only number, no longer generic

string), and sends the update request to the server

• First control update null uri

– Updates: server uses SSE encoding to push full-replace/incr of the resource

through the HTTP/2 stream

• event: only media-type;

stream id is carried by

frame; add content-id

to handle multipart

• Server handles dependency

– Close

• Server closes stream by indicate END_STREAM flag of last DATA

• Client closes stream by sending RST_STREAM

ALTO Interim, April 21, 2020 ALTO Incremental Using HTTP/2 9

Next Step
• Initial draft to be uploaded
• Feedback on the initial design highly welcome
• Focus on HTTP/2 or HTTP/2 and HTTP/3?

