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Scenario

 CPUs are at a standstill
* Moore’s law, Dennard Scaling...

* Now more than ever, we need acceleration!
* A new architectural approach is on the rise

* Domain Specific Architectures:
» Tailored to a specific domain of applications

* Programmable and power efficient!
 Examples: Google’s TPUs, GPUs, FPGAs
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The networking perspective

 From: The network is «just plumbing»*
* We still teach grad students

the end to end principle
[Saltzer, Redd & Clark, 1981]

* To: New classes of (smart!) switches
* Fast (12.8 Tbps!)
* Programmable
* Power efficient
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New trends

* An opportunity to co-design data centers applications
with modern HW! [Caulfield, Costa and Ghobadi, HPSR’18]

« Some tasks could be offloaded to dedicated HW...

* ... while keeping the most complex logics in general
purpose CPUs

* Does this vision work? Recent works say so!

* 10.000x improvement in throughput [NetPaxos, SOSR’1 3]
* 5X gain in power consumption [FlowBlaze, NSDI’19]
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This work in short

 We investigate the opportunity to offload MapReduce
tasks to stateful data planes

* We find the common requirements for MR tasks to
perform well on programmable HW

* We find out programmable data planes can achieve low
latency, low congestion processing

 We validate our approach through a HTTP traffic use case
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Background: MapReduce

* A programming model proposed by Google [OSDI '04]
» Users define Map() and Reduce() functions

* Goals:
* process huge amounts of data
* in a distributed fashion (divide-and-conquer style)

* Newer programming models... APACHE

5D STORM SPQF”(\Z @Flink

* ... Are no more than a superset of the MapReduce one!
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Background: MapReduce(2)

* Map():
* processes a generic input and generates intermediate <key,
value> pairs

* Multiple Map() instances, each receiving a split of the incoming
data as input

* Reduce():

* merges intermediate values associated within the same key

* Multiple Reduce() instances, each receives a partition of the key
space
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A toy example: WordCount
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MapReduce on programmable HW

 Can we port any MapReduce task to networking HW?
* No way!

 We can rather identify a subset of simple (yet
meaningful!) offloading-amenable tasks for data plane
HW

« What for?

* Low latency processing (very few ns), low variability
* In-network aggregation reduces congestion
* Free CPU cycles

» Let’s get into details...
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HW-MapReduce: requirements

_

* Map():
 We need to restrict the possible <key, value> pairs
* Programmable HW handles well packet headers
* Solution: we use a programmable parser

* Reduce():

* Devices must perform at line rate, few operations allowed!
* No loops allowed — Stateful!

* Small per-flow memory footprint (very few registers)
* Associative & commutative operations (mean, sum, max)... OK!

— Stateless!

N

Marco Faltelli 10



Is there a HW-MapReduce executor?

* Yes! FlowBlaze [NSDI'19], a stateful programmable data
plane

* Developed as a NF accelerator for both SW and SmartNICs

* A pipeline of stages:
» Stateless (match-action table)
« Stateful (Per-flow EFSM functionality)

* Processing restricted to a few clock cycles (i.e. nanoseconds!)
* Corresponding SW executors are bounded to milliseconds

 Many applications need strict real-time requirements (e.g. in High
Frequency Trading, every microsecond can make the difference!)
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FlowBlaze overview
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Why not P47?

» 2 ways proposed to manage stateful functionalities in P4:

1. New flow insertion driven by the control plane:

* When a new flow arrives, the packet is forwarded to the control
plane

* Increased latency
* Consistency issues between packet arrival and rule insertion

2. Hash-based selection:
* Register array index is selected through a hash function
* No easy way to resolve collisions! (use case depending)

* FlowBlaze manages collisions transparently for the user!
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Network Placement

 MapReduce massively expoits parallelism on many nodes

« We propose the same architecture distributing the
FlowBlaze nodes in the network

* E.g. in a fat-tree data center topology

« What if a few HW devices are available?
* We can route traffic to the FlowBlaze instance
* Or, we could use FlowBlaze as a SmartNIC endpoint
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Preliminary results

* A click-stream HTTP traffic analysis [Yu @SOSP’09]

 The MapReduce task snoops packets and computes three
different metrics:
 The number of user sessions (group by TCP 5-tuple & count)
» Average clicks per session (group by 5-tuple & HTTP.GET count)
* Average session duration (group by S5-tuple & avg session time)

* We used the FlowBlaze SW 1mplementat10n and the Trex
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Preliminary results: workload scaling
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Future work

* Integrate the XL toolchain in a MapReduce environment

 Implement a wider range of partition/aggregation
applications

* Execute multiple MapReduce tasks on the same HW
concurrently

* FlowBlaze as a multitenancy Function-as-a-service (FaaS) device

 Compare FlowBlaze and P4 through the P4—NetFPGA
workflow

Marco Faltelli 18



Thank you for your attention!
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