
Offloading Online MapReduce tasks 
with

Stateful Programmable Data Planes

Valerio Bruschi, Marco Faltelli, Angelo Tulumello, Salvatore 
Pontarelli, Francesco Quaglia, Giuseppe Bianchi



Scenario

• CPUs are at a standstill
• Moore’s law, Dennard Scaling… 

• Now more than ever, we need acceleration!
• A new architectural approach is on the rise
• Domain Specific Architectures:
• Tailored to a specific domain of applications
• Programmable and power efficient!
• Examples: Google’s TPUs, GPUs, FPGAs

2Marco Faltelli



The networking perspective

• From: The network is «just plumbing»*
• We still teach grad students
the end to end principle
[Saltzer, Redd & Clark, 1981]

• To: New classes of (smart!) switches
• Fast (12.8 Tbps!)
• Programmable
• Power efficient

3Marco Faltelli
* Source: R. Soulè, in SIGCOMM’18



New trends

• An opportunity to co-design data centers applications
with modern HW! [Caulfield, Costa and Ghobadi, HPSR’18]

• Some tasks could be offloaded to dedicated HW…
• … while keeping the most complex logics in general 

purpose CPUs
• Does this vision work? Recent works say so!
• 10.000x improvement in throughput [NetPaxos, SOSR’15]
• 5x gain in power consumption [FlowBlaze, NSDI’19]

4Marco Faltelli



This work in short

• We investigate the opportunity to offload MapReduce
tasks to stateful data planes
• We find the common requirements for MR tasks to 

perform well on programmable HW
• We find out programmable data planes can achieve low 

latency, low congestion processing
• We validate our approach through a HTTP traffic use case

5Marco Faltelli



Background: MapReduce

• A programming model proposed by Google [OSDI ’04]
• Users define Map() and Reduce() functions
• Goals:
• process huge amounts of data
• in a distributed fashion (divide-and-conquer style)

• Newer programming models…

• … Are no more than a superset of the MapReduce one!

6Marco Faltelli



Background: MapReduce(2)

• Map():
• processes a generic input and generates intermediate <key, 

value> pairs
• Multiple Map() instances, each receiving a split of the incoming 

data as input

• Reduce():
• merges intermediate values associated within the same key
• Multiple Reduce() instances, each receives a partition of the key 

space

7Marco Faltelli



A toy example: WordCount

8Marco Faltelli



MapReduce on programmable HW

• Can we port any MapReduce task to networking HW?
• No way!

• We can rather identify a subset of simple (yet
meaningful!) offloading-amenable tasks for data plane
HW
• What for?
• Low latency processing (very few ns), low variability
• In-network aggregation reduces congestion
• Free CPU cycles

• Let’s get into details…
9Marco Faltelli



HW-MapReduce: requirements

• Map():
• We need to restrict the possible <key, value> pairs
• Programmable HW handles well packet headers
• Solution: we use a programmable parser

• Reduce():
• Devices must perform at line rate, few operations allowed!
• No loops allowed
• Small per-flow memory footprint (very few registers)

• Associative & commutative operations (mean, sum, max)… OK!

10Marco Faltelli

Stateless!

Stateful!



Is there a HW-MapReduce executor?

• Yes! FlowBlaze [NSDI’19], a stateful programmable data 
plane
• Developed as a NF accelerator for both SW and SmartNICs
• A pipeline of stages:
• Stateless (match-action table)
• Stateful (Per-flow EFSM functionality)

• Processing restricted to a few clock cycles (i.e. nanoseconds!)
• Corresponding SW executors are bounded to milliseconds
• Many applications need strict real-time requirements (e.g. in High 

Frequency Trading, every microsecond can make the difference!)

11Marco Faltelli



FlowBlaze overview

12Marco Faltelli



Why not P4?

13Marco Faltelli

• 2 ways proposed to manage stateful functionalities in P4:
1. New flow insertion driven by the control plane:
• When a new flow arrives, the packet is forwarded to the control 

plane 
• Increased latency
• Consistency issues between packet arrival and rule insertion

2. Hash-based selection:
• Register array index is selected through a hash function
• No easy way to resolve collisions! (use case depending)

• FlowBlaze manages collisions transparently for the user!



Network Placement

14Marco Faltelli

• MapReduce massively expoits parallelism on many nodes
• We propose the same architecture distributing the 

FlowBlaze nodes in the network
• E.g. in a fat-tree data center topology

• What if a few HW devices are available?
• We can route traffic to the FlowBlaze instance
• Or, we could use FlowBlaze as a SmartNIC endpoint



Preliminary results

15Marco Faltelli

• A click-stream HTTP traffic analysis [Yu @SOSP’09]
• The MapReduce task snoops packets and computes three

different metrics:
• The number of user sessions (group by TCP 5-tuple & count)
• Average clicks per session (group by 5-tuple & HTTP.GET count)
• Average session duration (group by 5-tuple & avg session time)

• We used the FlowBlaze SW implementation and the Trex
traffic generator



Preliminary results: workload scaling

16Marco Faltelli

Trex parameters:
• 20 HTTP.GET 

requests per 
session

• 140 ms average 
session time

Saturating a 10Gb 
link, no losses.
Single CPU @2.1GHz



Preliminary results: workload scaling

17Marco Faltelli

Trex parameters:
• 20 HTTP.GET 

requests per 
session

• 140 ms average 
session time

Saturating a 10Gb 
link
Single CPU @1.8GHz



Future work

18Marco Faltelli

• Integrate the XL toolchain in a MapReduce environment
• Implement a wider range of partition/aggregation 

applications
• Execute multiple MapReduce tasks on the same HW 

concurrently
• FlowBlaze as a multitenancy Function-as-a-service (FaaS) device

• Compare FlowBlaze and P4 through the P4→NetFPGA 
workflow



19Marco Faltelli

Thank you for your attention!


