

Enhancing Security and Privacy with In-Network Computing

https://www.ietf.org/id/draft-fink-coin-sec-priv-00.txt

Ina Fink, Klaus Wehrle

Security & Privacy Shortcomings in Industrial Networks

- (Legacy) devices are increasingly connected to the Internet
 - ► Sensitive data & processes
- Lack of security & privacy mechanisms on devices
 - ► Financial and safety threats

 Potential to retrofit functions efficiently within the network

Basic protection mechanisms

Intrusion & anomaly detection

Basic Protection Mechanisms: Encryption and Integrity Checks

- Idea: retrofit encryption and check-sum calculation at closest networking devices
 - ▶ No additional hardware, processing overhead and attack surface
 - ▶ Problem: complex cryptographical operations impossible in existing programmable switches due to previous lack of use cases

Costs and benefits of equipping future networking hardware with elaborate cryptography chips?

Basic Protection Mechanisms: Authorization & Authentication

- Programmable networking devices can flexibly decide if packets should be forwarded
 - ▶ Prevent unauthorized access in the first place, notify administrator in case of incident
- Ideas:
 - 1) Handshake with networking device at connection start, e.g., based on passwords
 - 2) Use of secret tokens that are verified by the networking device, e.g., using hash chains
 - ▶ Calculations can be offloaded to the control plane with enforcement at switch

Basic Protection Mechanisms: Policies

- Idea: industrial devices show function-specific behavior and restricted communication
 - ▶ Block undesired connections based on IP addresses, ports, protocols, or bandwidth
 - ► C.f., Manufacturer Usage Description (MUD) [RFC8520]
- Flexible policy enforcement at line-rate
 - Advanced packet filtering
 - ► Consideration of contextual parameters, e.g., time of day

First proofs of concept exist but full potential remains unclear

Basic Protection Mechanisms: Privacy

- Various sensors and entanglement with physical world
 - ▶ Sensible data increasingly shared with other entities to enhance processes
- Idea: provide simple privacy mechanisms at networking devices
 - ▶ Pseudonymization by removing or replacing critical values
 - Aggregating values of multiple packets
 - ▶ Noise addition by altering values

Further examination needed to clarify potential and feasibility

Sophisticated Protection Mechanisms: Intrusion and Anomaly Detection

- Idea: provide advanced anomaly detection at line-rate
 - ▶ Based on sensor values and traffic patterns
 - ▶ E.g., comparison of sensor values with their usual range and use of flow statistics
- Extension of dead man's switches
 - Acceleration of failure detection to support safety
 - ▶ Automatic emergency shutdowns of a system or single components

Conclusion

- Potential of In-Network Computing for retrofitting and enhancing security & privacy
 - ► Basic protection
 - ▶ Intrusion and anomaly detection
- Reduce hardware costs and processing overhead
 - ► Especially beneficial for time-sensitive contexts, e.g., industrial networks, and resource-constrained devices

Ina Fink fink@comsys.rwth-aachen.de

Future work:

- Detailed examination of potentials and challenges
- Design of architectures and interaction between networking devices
- Implementation of proofs of concept

