
LISP+Wireguard
Alejandro Barcia, Albert López, Jordi Paillissé, Albert Cabellos

LISP WG Interim Meeting
May 2020

1

Intro

• Motivation
• Rethink LISP security architecture
• Focus on popular use cases only

• No need to provide security for all the use-cases
• Main inspiration: Wireguard

• In this talk
• What is Wireguard?
• LISP+Wireguard
• Implementation & Performance analysis
• Discussion

2

What is Wireguard?

3

What is Wireguard?

Jason A. Donenfeld “WireGuard: Next Generation Kernel Network Tunnel “https://www.wireguard.com/papers/wireguard.pdf

• Wireguard is a secure network tunnel (VPN)

• Merged in the Linux Kernel (≥ 5.6)

• Wireguard Design Principles
• Traditional solution is IPSec+IKEv2
• Large choices of cyphersuites and key exchange mechanisms
• Separated exchange layer form encrypted transport
• This results in complex code, hard to perform security audits and prone to

misconfiguration

• Wireguard aims to tradeoff flexibility for simplicity

4

Wireguard configuration

EID

RLOC

Jason A. Donenfeld “WireGuard: Next Generation Kernel Network Tunnel “https://www.wireguard.com/papers/wireguard.pdf

EID

5

Wireguard cryptokey routing

Jason A. Donenfeld “WireGuard: Next Generation Kernel Network Tunnel “https://www.wireguard.com/papers/wireguard.pdf
6

What is Wireguard?

• Key distribution equivalent to OpenSSH à Out-of-band exchange of
static public keys between peers
• Wireguard lacks cyper and protocol agility, only supports a set of

cyphersuits.
• No cypersuite negotation
• All nodes need to be (software) updated to support new ones

• Session key exchanges, connections, disconnections, reconnections,
discovery, and so forth happen behind the scenes transparently
• Wireguard natively supports layer 3 mobility
• No need to notify peers (e.g, SMR) about new location or rendevouz server

(e.g., Home Agent)

7

LISP+Wireguard

8

LISP+Wireguard

EID A EID B

Pull d_EID,RLOC,Kpub

Push s_EID+Kpub
No incoming packets
without the Kpub

9

LISP+Wireguard

EID A EID B
Wireguard Channel

10

LISP+Wireguard

EID A EID B
Wireguard Channel

Wire
gu

ard
Channel Wireguard Channel

The WG control-plane
Channel only needs
the Kpub of the MS

11

Implementation &
Performance Analysis

12

Prototype

• Prototyped and opensourced using Open Overlay Router [1]
•We configure the wg0 interface using WG API
•Mappings are only needed for the first connection
• Afterwards, WG takes care of new EID-to-RLOC mappings for that

peer

• No modifications to Wireguard kernel module
• No multihoming
• No IID
• No distributed MS

[1] https://openoverlayrouter.org/

Outer IP header UDP
header

Crypto
header Inner IP header Payload

Encrypted data

Mobility
Authentication,
Confidentiality

Access ControlInternetworking

Figure 2. Wireguard header structure

Table I
SAMPLE WIREGUARD CRYPTOKEY ROUTING TABLE

Allowed Source IP Public key Internet Endpoint
10.10.0.0/16, 10.11.0.0/16 Peer A key 80.80.80.80

172.16.1.0/24, 172.16.2.2/32 Peer B key 100.128.128.128
192.168.4.0/24 Peer C key 40.0.0.0

The key element of Wireguard operation is the cryptokey
routing table, that binds source IP addresses (usually IP
addresses in the private range) to peer public keys (table
I). In other words, the source IP is used to determine the
encryption key and the receiving peer. Additionally, it stores
the the Internet IP address of the peer, that is used in the ouper
IP header.

On the receiving end, successfully decrypted packets are
matched with the source IP prefixes of the associated public
key to determine if they’re accepted or dropped.

MAYBE A DIAGRAM OF PACKET PROCESSING IN
SRC AND DEST... unsure

Finally, we must remark that other common VPN protocols,
like IPsec, TLS or OpenVPN do not offer all of Wireguard’s
features, for example, IPsec supports mobility [8] but its
configuration is complex.

III. ARCHITECTURE

In a nutshell, our architecture lays two elements on top of
a Wireguard deployment (fig. 3). First, a centralized database
that contains, for each Wireguard Inner IP prefix, its associated
public key and endpoint IP address. Second, a secure control
channel between the centralized database and the Wireguard
peers, that we use to retrieve the aforementioned Wireguard
configuration (double dashed lines).

The centralized database distributes the configuration data
on demand (fig. 3): when a peer does not have the public key
for a particular destination IP (i.e. we don’t have an entry in
the WG crypto table), we request the public key and endpoint
IP via the control channel, and configure WG appropriately
(message (1) requests Key B and IP B for fig. 3). The central
server answers this request but also pushes Peer A’s public
key and Endpoint IP to Peer B (message 2). This is due to the
fact that, in order to successfully establish a new Wireguard
tunnel, both peers need to have each others’ public key. In
other words, we use a pull-and-push approach: the node that
initiates a connection pulls the key, while we push the key

Internet

Peer A

(1)

(3) Peer B

Src IP Public key Endpoint IP
Peer A IP Key A IP A
Peer B IP Key B IP B

Central
Server

IP A IP B

(2)

Figure 3. Distribution of Wireguard credentials via the centralized server. The
solid double line is a dynamically established Wireguard tunnel, and dashed
double lines are the statically defined Wireguard control plane tunnels.

Table II
EQUIVALENCE OF SEC. III MESSAGES AND LISP MESSAGES

Design message LISP message
Store key Map Register

Request key Map Request
Send key Map Notify

the receiving node. Finally, once both peers have each other’s
data, they can establish the Wireguard tunnel (3).

Taking this into account, we defined the following messages
for the control channel to interact with the database: (i) Store
a peer public key + endpoint IP, (ii) Request a peer public key,
and (iii) Send a public key to a peer.

IV. IMPLEMENTATION

In order to implement the protocol for the control channel,
we leveraged the control plane part of the Locator/ID Sepa-
ration Protocol (LISP [9]). Since this protocol is designed to
dynamically create network overlays, its messages are similar
to our requirements (table II). Moreover, the LISP architecture
includes the Mapping System, a centralized server that stores
pairs of overlay to underlay IP addresses. However, we can
use any other SDN southbound protocol such as OpenFlow
[10].

Our prototype is based on an open-source LISP implementa-
tion, Open Overlay Router (OOR [11]). OOR is implemented
in C and works in Linux user space, which makes it easy to
implement new features [12].

EXPAND, say we have two routing tables: wg one and
OOR one ADD, say what do you need for the initial setup
(server IP addr. and server key) We modified OOR so
that: (i) it uses a statically defined Wireguard tunnel to send
control plane requests to the central server, (ii) it supports the
aforementioned control plane messages, and (iii) it configures

13

End-to-End Latency

• Caches empty, latency of the first packet

��

����

����

����

����

����

���	

���

����

����

��

��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

�
�

���������������������

�� !!"
!!"

Figure 5. Tunnel Establishment end-to-end delay CDF

Linux Routing

TUN Interface

User Space

Kernel Space

OOR

Application
socket

Application

Physical
Interface

LISP Encapsulation

Retrieve
Endpoint Data

Routing
Config

Figure 6. Out of the box OOR implementation diagram. Solid lines represent
data plane traffic flow, dashed lines control plane traffic. As opposed to the
OOR + WG implementation in fig. 4, data plane traffic is copied between
kernel and userspace, adding overhead.

the number of elements in the central server. Specifically, we
measured the delay to receive the response of an endpoint
data request from the central server. @Alejandro: como es
que entre dos VMs hay max 120 µs?. We repeated this
experiment 50 times for each number of elements in the server.
We note that (i) the delay does not depend on the number of
elements (the server implementation uses a Patricia Trie [14]),
and (ii) adding the public key increases the delay on average
40 µ. Again, this modest increase it due to the aforementioned
extra XX bytes.

Finally, figure 9 presents the handover delay for OOR and
OOR+Wireguard. We connected two peers using two different
network interfaces, and simulated a handover by changing the
network interface. @Alejandro no acabo de entender lo que
explicas en la memoria, basicamente son dos nodos con dos
interfaces???. We ran a ping of 10 requests/ms between the

��

����

����

����

����

����

���	

���

����

����

��

��� ��� ��� ��� ��	 ��
 ��� ��� ��� ��� ���

�
�

���������������������������������

 !"#$
 !

Figure 7. Delay to request and configure a new endpoint

���

���

���

���

����

����

����

����

����

����

��� ���� ����� ������ �������

�
	

��
�

�
�
�
��
�
�
�	
�
��
��
�

�	
��	�����������

�����
���

Figure 8. Central Server Response Delay

��

��

��

��

��

��

��

�	

�

��

���

�� �� �� �� �
 ��� ��� ��� ��� ��
 ���

�

�
�
�
�
�
��
�
�
�
�
��
�
�

������

��
��

Figure 9. Handover delay

two machines and measured the amount time without ICMP
replies. We repeated this experiment 20 times. We can clearly
appreciate that Wireguard presents a handover delay nearly
one order of magnitude less than OOR. This is due to the fact
that the Wiregaurd handover : (i) operates in kernel space, and
(ii) it does not require control plane signaling, as opposed to
OOR, that issues a new Map Request / Map Register.

~1ms

14

Handover latency

��

����

����

����

����

����

���	

���

����

����

��

��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

�
�

���������������������

�� !!"
!!"

Figure 5. Tunnel Establishment end-to-end delay CDF

Linux Routing

TUN Interface

User Space

Kernel Space

OOR

Application
socket

Application

Physical
Interface

LISP Encapsulation

Retrieve
Endpoint Data

Routing
Config

Figure 6. Out of the box OOR implementation diagram. Solid lines represent
data plane traffic flow, dashed lines control plane traffic. As opposed to the
OOR + WG implementation in fig. 4, data plane traffic is copied between
kernel and userspace, adding overhead.

the number of elements in the central server. Specifically, we
measured the delay to receive the response of an endpoint
data request from the central server. @Alejandro: como es
que entre dos VMs hay max 120 µs?. We repeated this
experiment 50 times for each number of elements in the server.
We note that (i) the delay does not depend on the number of
elements (the server implementation uses a Patricia Trie [14]),
and (ii) adding the public key increases the delay on average
40 µ. Again, this modest increase it due to the aforementioned
extra XX bytes.

Finally, figure 9 presents the handover delay for OOR and
OOR+Wireguard. We connected two peers using two different
network interfaces, and simulated a handover by changing the
network interface. @Alejandro no acabo de entender lo que
explicas en la memoria, basicamente son dos nodos con dos
interfaces???. We ran a ping of 10 requests/ms between the

��

����

����

����

����

����

���	

���

����

����

��

��� ��� ��� ��� ��	 ��
 ��� ��� ��� ��� ���

�
�

���������������������������������

 !"#$
 !

Figure 7. Delay to request and configure a new endpoint

���

���

���

���

����

����

����

����

����

����

��� ���� ����� ������ �������

�
	

��
�

�
�
�
��
�
�
�	
�
��
��
�

�	
��	�����������

�����
���

Figure 8. Central Server Response Delay

��

��

��

��

��

��

��

�	

�

��

���

�� �� �� �� �
 ��� ��� ��� ��� ��
 ���

�

�
�
�
�
�
��
�
�
�
�
��
�
�

������

��
��

Figure 9. Handover delay

two machines and measured the amount time without ICMP
replies. We repeated this experiment 20 times. We can clearly
appreciate that Wireguard presents a handover delay nearly
one order of magnitude less than OOR. This is due to the fact
that the Wiregaurd handover : (i) operates in kernel space, and
(ii) it does not require control plane signaling, as opposed to
OOR, that issues a new Map Request / Map Register.

~7s

• No SMR
• No RTR
• No control-plane
• No RLOC-

probing
• Data-packets are

authenticated
with the Kpub

15

Discussion

16

Discussion

• This work represents two things:
• A LISP security architecture assuming a single MS deployment
• A control-plane for Wireguard

• How to support multi-homing?
• How to support IID?
• How to support distributed Mapping System?
•What can we learn from WG design principles?

17

