
RPC-over-RDMA 
Version Two

Chuck Lever

<chuck.lever@oracle.com>

mailto:chuck.lever@oracle.com


Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

The High-order Bit

• This presentation does not propose new features, but 
does suggest changes to existing protocol elements.


• The I-D authors have striven to minimize on-the-wire 
changes to the RPC/RDMA version 2 protocol.


• Will an RPC/RDMA version 2 protocol with significant on-
the-wire changes be embraced or ignored by 
implementers?

2



Implementation 
Experience



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Preparing for Version 2
• Linux NFS server prototype converts chunk lists to an 

internal representation:


• For more robust input validation 

• To make the bulk of the transport implementation agnostic 
to on-the-wire chunk format


• To handle multiple chunks per chunk list


• Handles multiple Write chunks in a Write list. Pushes them 
from ULP XDR encoders without holding the transport send 
mutex.

4



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Read Chunk Improvements

• RPC/RDMA version 2 now:


• Forbids a position-zero Read chunk to appear in an 
RDMA_MSG type Call.


• Requires an RDMA_NOMSG type Call to have a 
position-zero Read chunk.


• Requires the client to pre-sort the Read list by position.

5



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Overlapping Read Chunks

• Chunk overlap :: Assuming the Read list is sorted by 
position, the starting position and length of the NTH chunk 
in the Read list cause some of its content to fall after the 
starting position of the N+1TH chunk in the list.


• Chunk overlap can only occur when there is more than 
one normal Read chunk in the Read list.


• There is no protocol solution yet to prevent chunk 
overlap. Responders have to check ingress Read lists and 
throw an error when overlap is detected.

6



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Over-sized Read Chunks
• A malicious or broken requester can create a Read chunk 

that asks the responder’s RNIC to pull an enormous 
amount of data, resulting in a DoS. Responder ULP 
implementation must set a sane limit on chunk size.


• A similar issue does not exist for Write chunks:


• The responder uses only as much of the Write chunk as 
it needs.


• Hardware memory registration limits how much data 
the responder can write into the requester’s memory.

7



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Chunk List Parsing
• Write list parsing is efficient:


• Each chunk’s segments appear in a counted array.


• List is always in order.


• Read list parsing is not efficient:


• Receivers need to walk the list multiple times to count 
how many Read chunks and segments appear.


• Segment position values don’t have to be monotonic.
8



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Pulling Chunks in XDR 
Decoders

• The original plan for RPC/RDMA version 1 was to have 
ULP XDR decoders pull Read chunks. This is not always 
feasible:


• NFS servers may checksum a portion of ingress RPC 
messages to detect and avoid processing replayed 
Calls.


• Position-zero Read chunks span XDR data items and 
therefore must be pulled by the transport, not by ULP 
XDR decoders.

9



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Vestigial Reply Read Lists

• RPC/RDMA version 2 still requires a Read list to appear in 
a Reply, even though it’s always empty. Do we want to 
continue to dream of using a Reply Read list someday?


• What if a Responder sends a Reply message that has 
both a Read list and a Reply chunk? The Reply chunk 
requires NOMSG, but a Reply Read list cannot have a 
PZRC.


• Allowing the Read list to appear in a Reply appears to be 
cumbersome at this point.

10



Wacky Ideas



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Chunks On-the-wire

• Possible simplification: have a single on-the-wire chunk 
format.


• Except for the position field, both types of chunk carry 
the same information.


• Instead of different Read and Write chunk formats, can 
we replace Read chunks / segments with Write chunks 
by adding a position field to the Write chunk?

12



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Whither PZRCs?

• Possible simplification: replace the Position-zero Read 
chunk.


• A “Call chunk” could work like a Reply chunk.


• Or, have one special “body chunk” that could be used 
for the RPC message body in both Calls or Replies.


• Body chunks are always handled by the transport, 
not an XDR decoder.

13



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Replace RDMA2_MSG?
• Instead, have distinct header types for Call messages and 

Reply messages, and distinct header types for handling 
message continuation.


• Simpler sender and receiver processing.


• The rdma2_flags field would no longer necessary.


• Some header types could leave out chunk lists, making 
more room for inline payload content or other header 
information.

14



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

RPC Call Messages
• Call_Last: Call with an inline body, actual arguments, 

provisioned results. Would also mean "last Send in message 
chain”. This would work like today’s RDMA2_MSG, but only 
for Calls.


• Call_Middle: Call with continuation, no chunk lists. All RPC 
message content is inline.


• Call_External: Call with a chunk body, no inline content. This 
would be like today’s RDMA2_NOMSG, but only for Calls.


• Last and External may carry provisional Write/Reply chunks.

15



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

RPC Reply Messages
• None of these would carry a Read list or provisioned but 

unused chunks:


• Reply_Last: Reply with an inline body, actual results, and no 
Reply chunk. Would also mean "last Send in chain”. This 
would work like today’s RDMA2_MSG, but only for Replies.


• Reply_Middle: Reply with continuation and no chunks. All 
RPC message content is inline.


• Reply_External: Reply with a chunk body, no inline content. 
This would be like today’s RDMA2_NOMSG, but only for 
Replies.

16



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Message Continuation
• Last always terminates a sequence of Middles.


• To send an RPC message whose inline body fits under the 
inline threshold, the sender would use a single Last.


• To send an RPC message between 8KB and 12KB, it 
would be put on the wire with a sequence like Middle-
Middle-Last (empty chunk lists).


• That also works for an RPC message whose body is larger 
than the inline threshold but carries one or more chunks. 
So, Middle-Middle-Last (with populated chunk lists).

17



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Control Plane Messages

• None of these header types need to have chunks:


• Error response


• Connprop_Last


• Connprop_Middle


• Asynchronous credit grant

18



Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Prototyping Next Steps
• Milestone states document delivery by December 2020. 

These as-yet-unprototyped features still feel risky to me:


• Transport protocol version negotiation


• The new credit management mechanism


• Connection properties


• Host authentication


• Message continuation
19


