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How can we designh commercializable Al solutions for networking?
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Commercialization problem of traditional Al solutions for networks

* Main barrier to achieve
commercializable Al products: Customer’s network
w DR N

S

* Traditional Al-based solutions do not
generalize to other networks
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and may cause service disruption due to i

possible wrong configurations! i

* Difficult to replicate the customer’s network in
a networking lab to train the Al product
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* Main barrier to achieve
commercializable Al products:

* Traditional Al-based solutions do not
generalize to other networks

* It is unfeasible to train Al tools for networking
on the customer’s network:

1 1
i It would require network instrumentation !
I . . . !
i and may cause service disruption due to i
i possible wrong configurations! i

* Difficult to replicate the customer’s network in
a networking lab to train the Al product
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| Need for Al models able to generalize to
| other networks unseen during training
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GNN as a commercializable Al solution for networking

So far, Graph Neural Networks (GNN) are the
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GNN as a commercializable Al solution for networking

So far, Graph Neural Networks (GNN) are the
only Al-based models that can generalize to
other networks (not seen in advance):

*  Topology
° Routing configuration
*  Traffic

Vendor’s lab:

* Offline training on controlled testbeds with
synthetic topologies and configurations

W - - -

model 1
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So far, Graph Neural Networks (GNN) are the
only Al-based models that can generalize to
other networks (not seen in advance):

*  Topology
. Routing configuration
*  Traffic

Vendor’s lab:

* Offline training on controlled testbeds with
synthetic topologies and configurations

Deployment on the customer’s network:

* One final product that can operate on any
customer network
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Customer’s network
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Design of GNN-based solutions for networking

* Necessity of custom GNN designs for different networking use cases:
*  QoS-aware configuration optimization (e.g., routing)
*  Optical Networks (e.g., routing, modulation, spectrum assignment)
*  VNF placement
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Design of GNN-based solutions for networking

* Necessity of custom GNN designs for different networking use cases:
* QoS-aware configuration optimization (e.g., routing)

Optical Networks (e.g., routing, modulation, spectrum assignment)
*  VNF placement

Each use case requires a mathematical formulation to represent the different network
elements involved in the form of graphs:

* E.g., topology, routing, traffic, security policy... R s /%
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Need of ML experts with high skills on neural network programming (e.g. TensorFlow)
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Design of GNN-based solutions for networking

Necessity of custom GNN designs for different networking use cases:
* QoS-aware configuration optimization (e.g., routing)

Optical Networks (e.g., routing, modulation, spectrum assignment)
*  VNF placement

" Eal Motivation: To boost the adoption of GNN for networks it is

| essential to simplify the implementation of GNN prototypes
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Need of ML experts with high skills on neural network programming (e.g. TensorFlow)
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IGNNITION: A framework for fast prototyping
of GNN models for network Al
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IGNNITION: GNN framework for network Al

What is IGNNITION?
* Generic framework for GNN applied to networking

Topology )

Traffic matrix I:>
Routing scheme I:>

H Performance metrics
(per-path delays, jitter)

il EEN EEN BN N S .y,

IGNNITION is an easy-to-use GNN toolbox for

networking researchers/practitioners
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IGNNITION: GNN framework for network Al

Why this framework?

* Current situation: 'F O PyTorch TM]S

° Programs in Tensor-based languages  TensorFlow Huawei Mindspore

' --------------------------- '
I h_tild = tf.gather{link_state,links) I
| |
I ids=tf.stack([paths, seqs], axis=1) I Main difficultieso
2 L ]

: max_len = tf.reduce_max(seqs)+1 : =

shape = tf.stack({[f_['n_paths'], max_len, self.hparams.link_state_diml) . .
: lens = tf.math.segment_sum(date=tf.ones_like(paths), : 1) Convert GNN dESlgnS |nt0
I segment_ids=paths) I ° °
" - complex tensor-wise operatlons
I link_inputs = tf.scatter_nd(ids, h_tild, shape) I
I outputs, path_state = tf.nn.dynamic_rnn{self.path_update, I
| N i 2) Very complex to debug!
I sequence_length=lens, I
l initial state = path_state, l
| dtype=tf.float32) |
| |
U o o S S S BN N B BN NN BN BN EEN BN NN EEN BN NN EEN BN NN BN BN . ol
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IGNNITION: GNN framework for network Al

How it works?

Networking use case:

- Routing optimization

- Security policy

- Network Function Virtualization

- Target metrics (e.g., performance,
anomaly detection)
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IGNNITION: GNN framework for network Al

How it works?

[ GNN model design

’ -------- L}

Networking use case:
- Routing optimization

- Security policy

- Network Function Virtualization

- Target metrics (e.g., performance,
anomaly detection)
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IGNNITION: GNN framework for network Al

How it works?

GNN model implementation

. ) _
I GNN mOdel d@SIg n I for _ in range(self.hparams.T}:

h_tild = tf.gather{link_state,links)
’ L B N N N N N _§N | -_—

l IGNNITION ‘ ids=tf.stack([paths, segs], axis=1)
l l max_len = tf.reduce_max{seqs)+1
. l | shape = tf.stack{[f_['n_paths], max_len, self.hparams.link_state_dim])
NEtWOrklng use case. | | lens = tf.math.segment_sum{data=tf.ones_like({paths),
Routing optimization [ : || Automatic code e
- g op ) I \ [I generation link_inputs = tf.scatter_nd(ids, h_tild, shape)
- Secu rlty p0| |Cy -~ - outputs, path_state = tf.nn.dynamic_rnn{self.path_update,
. . . . 5 8 B B N B B B B N § T link inputs,
- Network Function Virtualization T e
- Target metrics (e.g., performance, initisl_state = path_state,
. dtypes=tf.float32)
anomaly detection) .
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IGNNITION: GNN framework for network Al

User’s workflow

Step 1

Develop you own GNN solution
in three simple steps

GNN model
description

29/05/2020
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Step 2

Migrate your
dataset to JSON

=

Fast prototyping of complex Graph Neural Networks for Networking

Step 3

Training/evaluation
execution
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IGNNITION: GNN framework for network Al

Step 1: GNN model description

Network elements Relations between elements
"entities": [ [ . .

{ { The GNN model is defined
"name": "link", "stepl™:[ . .
"hidden_state_dimension™: 32, { o VIa a JSON flle
"Features™:[ “"type”: "indiwvidual",

{ “source_entity": "link",
"name": "link_capacity", "destination_entity":"path”,
o T Network abstraction:

. y (ReioveeTorts e tinks_patns" < Descriptive representation of

¢ g the network elements involved
"name": "path", { o .

"hidden_szate_dimensinn": 3z, “step2™:[ 18] the netWOFklng use case
"Features™:[ 1
{ "type": "individual",
“nam“: "tr-.a-F.Fic"’ .ISDurEE_entit}r": "Dath", ---------.----------------I
sizen: 1 “destination_entity": link", : We provide a template and I
} "agregation”: “sum"”, o ° e I
1 "update”: "recurrent”, I dOcumentathn tO fl" the JSON flle l
1 ¥l
h
1
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Step 2: Migrate your dataset to JSON
* Standard JSON interface to easily feed the GNN model with any dataset

Step 3: Training/evaluation execution
* Execution with just few lines of code

* Training:

gnn_model = load model(json_file)

train_and evaluate(gnn_model, path to dataset, training params file)

* Execute a trained model:

LE{I'lI'l_'T:::dEl = l:::Eid_t"E|i|'|Ed_'T:::|:lEl|: |:|E|t|'|_t:::_'1':::dEl']

predict(gnn_model, dataset)
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IGNNITION: GNN framework for network Al

Easy to debug

* Visualization of GNN models automatically generated (interactive graph):

iteration_1

)

Reratorethiet links_ta Paths j

message_pas... |[~* . init] -

E E
i atnrEeiNest paths_to_links
| 2
S S
General overview of RouteNet* One message-passing iteration in RouteNet*

The framework identifies potential errors and assists users to correct them

*K. Rusek, J. Suarez-Varela, A. Mestres, P. Barlet-Ros, A. Cabellos-Aparicio A, “Unveiling the potential of Graph Neural Networks for network modeling
and optimization in SDN,” In Proceedings of ACM SOSR, pp. 140-151, 2019.
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IGNNITION: GNN framework for network Al

Main advantages
* Fast GNN prototyping for networking practitioners/researchers:

-F‘ | M]s ‘O |:> Months to create a GNN prototype

£,GNNITIONY

i Ve |:> Few hours for a GNN prototype

----’

* It provides support to design GNN protypes for any networking use case

* Easy debugging

Bridge the gap between the
networking and Al communities
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Main advantages
* Public repository with state-of-the-art GNN models applied to networks:

*  Standard Message-passing on networks

*  RouteNet* ?

Progress and education in Al cannot occur without public implementations and datasets

* Open source software (v0.1)
https://github.com/knowledgedefinednetworking/ignnition

*K. Rusek, J. Sudrez-Varela, A. Mestres, P. Barlet-Ros, A. Cabellos-Aparicio, “Unveiling the potential of Graph Neural Networks for
network modeling and optimization in SDN,” In Proc. of ACM SOSR, 2019.
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Graph Neural Networking

Challenge 2020
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https://bnn.upc.edu/challenge2020

Graph Neural Networking challenge 2020

Problem overview:

Topology

Neural Network Per-source-destination

Traffic matrix | mean delay

Configuration

° |nputs:
* Network topology

* Source-destination traffic matrix
* Network configuration:
* Routing
* Queue scheduling policy (e.g., Weighted Fair Queueing, Deficit Round Robin)

° Qutput:
* Mean per-packet delay on each source-destination path
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Graph Neural Networking challenge 2020

Datasets:
C Dataset R
Fmm——————— gt ol N ST \
:‘ Network EE Configuration 11 Traffic E ! Per-flow |
=‘~ topology j:k (rzgﬁ;‘il‘i‘r‘]‘ge)”e J::‘ matrix j i\ mean delay ,':
.- ———-——-- J
ﬁ M
Input features Output labels

* Simulated with OMNet++

* Several topologies, hundreds of combinations of routing + queue scheduling + traffic

* Three different datasets:
*  Training and evaluation = Include output labels
* Test set 2 Unlabeled (used to evaluate proposed solutions)
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Graph Neural Networking challenge 2020

Evaluation:

* Test the generalization capabilities of neural network solutions:
*  Training dataset > Samples simulated in two network topologies
* Validation and Test datasets = Samples simulated in a third topology

* We will test the capability of the proposed solutions to make good delay predictions
in the third network (unseen during training)
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* Target audience:
*  Networking community
* Al community (GNN is a hot topic!) U
Al/MLin 5G

Challenge

Ap
[ae]

* Resources:
. Baseline model and tutorial 2 RouteNet*

* APl to easily read and process the datasets
y P Check a list with all the challenges (e.g., China telecom,
° Mailing list to engage participants China Unicom, Vodafone, Lenovo, ZTE, etc) at:
https://www.itu.int/en/ITU-T/Al/challenge/2020/Pages/default.aspx

* Organized as part of the ITU Al/ML in 5G Challenge

*K. Rusek, J. Sudrez-Varela, A. Mestres, P. Barlet-Ros, A. Cabellos-Aparicio, “Unveiling the potential of Graph Neural Networks for

network modeling and optimization in SDN,” In Proc. of ACM SOSR, 2019.
28
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https://github.com/knowledgedefinednetworking/RouteNet-challenge
https://www.itu.int/en/ITU-T/AI/challenge/2020/Pages/default.aspx

Graph Neural Networking

Challenge 2020

See all the details at:
https://bnn.upc.edu/challenge2020

* Open to all participants around the world! (teams up to 4 members)
* Timeline 2 May 22nd-Nov 15t (~6-month duration)

* Final conference and awards - Nov-Dec 2020

29/05/2020 Fast prototyping of complex Graph Neural Networks for Networking
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your attention!
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