OAuth 2.0 Security Best
Current Practice

interface(a.b
2 f=arguments. |
; }eatchie){
} ; ;ﬁu} ‘Sp‘.
" :f};}’sﬂﬁ‘}: f
s_2i=kls Lsa||!
d=c TRl iT(!:

Torsten Lodderstedt, John Bradley, Andrey Labu'_rif.eff"'s,f;ff],‘):éhiel Fett



draft-ietf-oauth-security-topics-15

e Refines and enhances security guidance for OAuth 2.0 implementers

e Updates, but does not replace:
o  OAuth 2.0 Threat Model and Security Considerations (RFC 6819)
o  OAuth 2.0 Security Considerations (RFC 6749 & 6750)

e Updated, more comprehensive Threat Model
e Description of Attacks and Mitigations
e Simple and actionable recommendations



Working Group Last Call

e On Version -13
e Several comments, from editorial to content



Changes After WGLC (-13)



Editorial Changes

e Attacker Model moved to Section 2, Recommendations is Section 1

e \arious small improvements, e.g.,
o clarifications,
o definitions (CSRF and open redirector),
o expanded some attack details and examples,
o restructured discussions on mitigations and removed some less-relevant discussions.

e And, yes, we fixed the reference to RFC 84184



Normative Changes

e Open redirectors:
o Clients “SHOULD NOT avoid forwarding...”, ... otherwise “are advised to implement
countermeasures against open redirection”
— “Clients MUST NOT expose [open redirectors]’

Clients SHOULD avoid forwarding the user's browser to a URI obtained Clients MUST NOT expose URLs that forward the user's browser to
from a query parameter since such a function could be utilized to arbitrary URIs obtained from a query parameter ("open redirector").
exfiltrate authorization codes and access tokens. If there is a Open redirectors can enable exfiltration of authorization codes and
strong need for this kind of redirects, clients are advised to access tokens, see Section 4.9.1.

implement appropriate countermeasures against open redirection, e.g.,

as described by OWASP [owasp].



Normative Changes

e PKCE:

o AS “SHOULD provide a way to detect their support for PKCE” (implementation-specific or

metadata)
— “MUST”

AS SHOULD provide a way to detect their support for PKCE. To this
end, they SHOULD either (a) publish, in their AS metadata
([!'@RFC8418]), the element "code challenge methods supported"
containing the supported PKCE challenge methods (which can be used by
the client to detect PKCE support) or (b) provide a deployment-
specific way to ensure or determine PKCE support by the AS.

Authorization servers MUST provide a way to detect their support for
PKCE. To this end, they MUST either (a) publish the element

"code challenge methods supported" in their AS metadata ([RFC8418])
containing the supported PKCE challenge methods (which can be used by
the client to detect PKCE support) or (b) provide a deployment-
specific way to ensure or determine PKCE support by the AS.



Implicit Grant

Before:

Clients SHOULD NOT use Implicit unless ATs
are sender-constrained and AT injection is
prevented.

Clients SHOULD use code, which also allows
for sender-constraining.

Clients SHOULD use sender-constraining.

After:

Clients SHOULD NOT use Implicit unless AT
injection is prevented and token leakage vectors
are mitigated.

Clients SHOULD use code.

Clients SHOULD use sender-constraining.



In order to avoid these issues, clients SHOULD NOT use the implicit
grant (response type "token") or any other response type issuing
access tokens in the authorization response, such as "token id token"
and "code token id token", unless the issued access tokens are
sender-constrained and access token injection in the authorization
response is prevented.

A sender-constrained access token scopes the applicability of an
access token to a certain sender. This sender is obliged to
demonstrate knowledge of a certain secret as prerequisite for the
acceptance of that token at the recipient (e.g., a resource server).

Clients SHOULD instead use the response type "code" (aka
authorization code grant type) as specified in Section 3.1.1 or any
other response type that causes the authorization server to issue
access tokens in the token response. This allows the authorization
server to detect replay attempts and generally reduces the attack
surface since access tokens are not exposed in URLs. It also allows
the authorization server to sender-constrain the issued tokens.

Token Replay Prevention

Authorization servers SHOULD use TLS-based methods for sender-
constrained access tokens as described in Section 4.8.1.2, such as
token binding [I-D.ietf-oauth-token-binding] or Mutual TLS for OAuth
2.0 [I-D.ietf-oauth-mtls] in order to prevent token replay. Refresh
tokens MUST be sender-constrained or use refresh token rotation as
described in Section 4.12.

In order to avoid these issues, clients SHOULD NOT use the implicit
grant (response type "token") or other response types issuing access
tokens in the authorization response, unless access token injection
in the authorization response is prevented and the aforementioned
token leakage vectors are mitigated.

Clients SHOULD instead use the response type "code" (aka
authorization code grant type) as specified in Section 2.1.1 or any
other response type that causes the authorization server to issue
access tokens in the token response, such as the "code id token"
response type. This allows the authorization server to detect replay
attempts by attackers and generally reduces the attack surface since
access tokens are not exposed in URLs. It also allows the
authorization server to sender-constrain the issued tokens (see next
section).

Token Replay Prevention

A sender-constrained access token scopes the applicability of an
access token to a certain sender. This sender is obliged to
demonstrate knowledge of a certain secret as prerequisite for the
acceptance of that token at the recipient (e.g., a resource server).

Authorization and resource servers SHOULD use mechanisms for sender-
constrained access tokens to prevent token replay as described in
Section 4.8.1.1.2. The use of Mutual TLS for OAuth 2.0 [RFC8705] is
RECOMMENDED. Refresh tokens MUST be sender-constrained or use
refresh token rotation as described in Section 4.12.



Ready for Publication?



Q&A



