Taming Acknowledgements

... aka, ACK thinning, Ack scaling, Ack reduction

Tong Li, Kai Zheng, Rahul Jadhav, Jiao Kang
Huawel
IETF 107

Why?

* |[n wireless scenarios, cost of frame transmission, regardless of its size, is
significant
* Inter-frame spacing coordinates access to common medium
« Faster PHY rates accentuates the problem

« Savings in ACK traffic translates to improvements in goodput rates

« Some mitigation strategies used in WLAN
« Frame aggregation

<€
* Impact? DIFS

>
PIFS Random

| lﬁ ml SIFS \%\g
G R

Our use-Case: Wi-Fi Direct transfers

Single hop
» Local file transfer
* Wireless Projection
« Wi-Fi Direct scenarios

High throughput scenario
« High throughput more ACKs

Similar delay in both direction

Problem increases with 4K
wireless streaming

TCP. not very well suited

.))) s (((-

ACK intensity

Byte-counting ACK Periodic ACK
f bw 1
L+MSS f==
ACK
— - a
ACK __ _ —
— a
ACK _ _ —
(b) (c)
 L:sending an ACK for every L (L=1, 2, 3, 4...) a: sending an ACK for each time interval (a)
incoming full-sized packets ... where «a is a function of RTT.

bw—o0 [=00 bW=00 [= Constant

Tamed ACKs

| b 1 . (/b b
[tack =mm{L.]\‘;_fvSS'a}=mm{L -W]\n/_;aSXS ’ RTTmin}

| |
if bdp<L.pMSS if bdp=L.pMSS

(Byte-counting ACK) (Periodical ACK)

If BDP is small, byte-counting ACK is used
If BDP is large, periodical ACK is used
With newer wireless standards, the BDP is significantly increasing

Triggering ACK on out-of-order data reception takes care of responding to loss events.

Data: ACK reduction with TACK

Considering L=2, p=4

Af = ftcp — frack

® RTT=10ms
¢ RTT=80ms
¥ RTT=200ms

| T l |
802.11b 802.11g 802.11n 802.11ac

(a) ACK frequency reduction

| 802.11b | 802.11ac
RTTwia| (12) | (12) | =2 | (12)
10 ms 294 294 24777 400
80ms | 294 50 | 24777) S0
200 ms 294 20 24777 20

(b) ACK frequency (Hz)

Data: Goodput improvement

g 150 320

0 Goodputiack — Goodputicp 280

= 0

g ® RTT=10ms S 240 - A W G S

a %7 e RrT=80ms ' = 200 - __‘___‘__..._.-—3

3 x RTT=200ms 5 160 g 4"

3 =10

O 50 - @) ¢ Ideal Goodput

= Q 80 .

O) @ UDP Baseline

3 A -~ PHY Capacity

Q (- : 0 T T T T T]

g I I I I TCP TCP TCP TCP TCP TACK
802.11b 802.11g 802.11n 802.11ac L=1 L=2 L=4 L=8 L=16 L=2

(a) Goodput improvement (b) Ideal goodput trend

TCP’s Acknowledgement Scheme

« Scheme is tailored

* to reduce traffic bursts
 thus low buffering requirements
« L cannot be greater than 2

 provides fine-grained RTT estimation
» Loss Recovery following TCP’s design constraints
» Tolerate reneging

« TCP enforces these conditions for all connections
« Even if certain connections may be tolerant to some of the above conditions

« TCP does not consider app’s latency tolerance
 Tries minimizing latency given the network conditions and not app’s requirements

Lower bound for ACKs?

* Max ACK traffic reduction before impacting performance?

* |deal Conditions: No loss, Less RTT variation

« Landstrom et.al. theoretically analyze that 2 ACKs per send window is
good enough

 Practically, 4 ACKs per send window suffices to maintain performance
« Having said that it has implications on traffic burstiness etc.

Reducing the TCP Acknowledgement Frequency: Landstrom et.al. ACM SIGCOMM CCR 2007

Side-effects of ACK thinning

* Widely documented [RFC2525]

* Impact on Loss Recovery

« Mitigation: Immediately ACK out-of-order segment
* QUIC already allows it

* Traffic burstiness impacting buffering

 Certain scenarios do not have problems with this (our case for e.g.)

 RTT estimation
« One way delay i.e., from sender to receiver serves as good input
« Our case: Near-symmetricity of paths (in terms of propagation delay)
* QUIC allows to measure receiver induced delay

Existing work in IETF

» draft-gomez-tcpm-ack-pull-01
* Proposing quite the opposite of what we trying
* draft-iyengar-quic-delayed-ack-00, submitted in Jan 2020

* Proposes QUIC extensions for sender-controlled ACKing

« draft-fairhurst-quic-ack-scaling-00, submitted in Jan 2020

« ACK scaling for asymmetric links, however, can be generalized

What do we bring to the WG?

 OQur use-cases, observations, data-set

* Techniques, how we ended up reducing ACK frequency?

* Theoretical analysis
« Experiments with Linux kernel TCP
« Experiments with our proprietary protocol FILLP

* Hoping to generalize some of the techniques
» across WAN scenarios
e and across asymmetric links

* Regardless, different use-cases will demand different behaviour

* The transport scheme should take this into account
* i.e. be flexible on per connection basis

