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Why?

* |[n wireless scenarios, cost of frame transmission, regardless of its size, is
significant
* Inter-frame spacing coordinates access to common medium
« Faster PHY rates accentuates the problem

« Savings in ACK traffic translates to improvements in goodput rates

« Some mitigation strategies used in WLAN
« Frame aggregation
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Our use-Case: Wi-Fi Direct transfers

Single hop
» Local file transfer
* Wireless Projection
« Wi-Fi Direct scenarios

High throughput scenario
« High throughput more ACKs

Similar delay in both direction

Problem increases with 4K
wireless streaming

TCP. not very well suited
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 L:sending an ACK for every L (L=1, 2, 3, 4...) a: sending an ACK for each time interval (a)
incoming full-sized packets ... where «a is a function of RTT.
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Tamed ACKs
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(Byte-counting ACK) (Periodical ACK)

If BDP is small, byte-counting ACK is used
If BDP is large, periodical ACK is used
With newer wireless standards, the BDP is significantly increasing

Triggering ACK on out-of-order data reception takes care of responding to loss events.



Data: ACK reduction with TACK

Considering L=2, p=4

Af = ftcp — frack
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Data: Goodput improvement
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TCP’s Acknowledgement Scheme

« Scheme is tailored

* to reduce traffic bursts
 thus low buffering requirements
« L cannot be greater than 2

 provides fine-grained RTT estimation
» Loss Recovery following TCP’s design constraints
» Tolerate reneging

« TCP enforces these conditions for all connections
« Even if certain connections may be tolerant to some of the above conditions

« TCP does not consider app’s latency tolerance
 Tries minimizing latency given the network conditions and not app’s requirements



Lower bound for ACKs?

* Max ACK traffic reduction before impacting performance?

* |deal Conditions: No loss, Less RTT variation

« Landstrom et.al. theoretically analyze that 2 ACKs per send window is
good enough

 Practically, 4 ACKs per send window suffices to maintain performance
« Having said that it has implications on traffic burstiness etc.

Reducing the TCP Acknowledgement Frequency: Landstrom et.al. ACM SIGCOMM CCR 2007



Side-effects of ACK thinning

* Widely documented [RFC2525]

* Impact on Loss Recovery

« Mitigation: Immediately ACK out-of-order segment
* QUIC already allows it

* Traffic burstiness impacting buffering

 Certain scenarios do not have problems with this (our case for e.g.)

 RTT estimation
« One way delay i.e., from sender to receiver serves as good input
« Our case: Near-symmetricity of paths (in terms of propagation delay)
* QUIC allows to measure receiver induced delay



Existing work in IETF

» draft-gomez-tcpm-ack-pull-01
* Proposing quite the opposite of what we trying
* draft-iyengar-quic-delayed-ack-00, submitted in Jan 2020

* Proposes QUIC extensions for sender-controlled ACKing

« draft-fairhurst-quic-ack-scaling-00, submitted in Jan 2020

« ACK scaling for asymmetric links, however, can be generalized



What do we bring to the WG?

 OQur use-cases, observations, data-set

* Techniques, how we ended up reducing ACK frequency?

* Theoretical analysis
« Experiments with Linux kernel TCP
« Experiments with our proprietary protocol FILLP

* Hoping to generalize some of the techniques
» across WAN scenarios
e and across asymmetric links

* Regardless, different use-cases will demand different behaviour

* The transport scheme should take this into account
* i.e. be flexible on per connection basis



