
Tong Li, Kai Zheng, Rahul Jadhav, Jiao Kang

Huawei
IETF 107

... aka, ACK thinning, Ack scaling, Ack reduction

• In wireless scenarios, cost of frame transmission, regardless of its size, is
significant

• Inter-frame spacing coordinates access to common medium
• Faster PHY rates accentuates the problem

• Savings in ACK traffic translates to improvements in goodput rates
• Some mitigation strategies used in WLAN

• Frame aggregation
• Impact?

Busy
medium

Contention
window Next frame

DIFS

PIFS

SIFS

Time

Random
backoff

• Single hop
• Local file transfer
• Wireless Projection
• Wi-Fi Direct scenarios

• High throughput scenario
• High throughput more ACKs

• Similar delay in both direction
• Problem increases with 4K

wireless streaming
• TCP, not very well suited

Byte-counting ACK

• L: sending an ACK for every L (L=1, 2, 3, 4…)
incoming full-sized packets

Periodic ACK

�: sending an ACK for each time interval (�)
... where � is a function of RTT.

ACK

ACK

ACK

�

� =
1
�

� =
�X

� ∙�XX

�

∞�X � ∞ � Constant∞�X

Tamed ACKs

����� = �X �
�X

� ∙�XX,
1
�� = �X �

�X���
� ∙�XX ,

�
�XX���

�

�X �X < � ∙ � ∙�XX �X �X ≥ � ∙ � ∙�XX
(Byte-counting ACK) (Periodical ACK)

If BDP is small, byte-counting ACK is used

If BDP is large, periodical ACK is used

With newer wireless standards, the BDP is significantly increasing

Triggering ACK on out-of-order data reception takes care of responding to loss events.

Data: ACK reduction with TACK
Considering L=2, �=4

Data: Goodput improvement

• Scheme is tailored
• to reduce traffic bursts

• thus low buffering requirements
• L cannot be greater than 2

• provides fine-grained RTT estimation
• Loss Recovery following TCP’s design constraints

• Tolerate reneging

• TCP enforces these conditions for all connections
• Even if certain connections may be tolerant to some of the above conditions

• TCP does not consider app’s latency tolerance
• Tries minimizing latency given the network conditions and not app’s requirements

• Max ACK traffic reduction before impacting performance?
• Ideal Conditions: No loss, Less RTT variation

• Landstrom et.al. theoretically analyze that 2 ACKs per send window is
good enough

• Practically, 4 ACKs per send window suffices to maintain performance
• Having said that it has implications on traffic burstiness etc.

Reducing the TCP Acknowledgement Frequency: Landstrom et.al. ACM SIGCOMM CCR 2007

• Widely documented [RFC2525]
• Impact on Loss Recovery

• Mitigation: Immediately ACK out-of-order segment
• QUIC already allows it

• Traffic burstiness impacting buffering
• Certain scenarios do not have problems with this (our case for e.g.)

• RTT estimation
• One way delay i.e., from sender to receiver serves as good input
• Our case: Near-symmetricity of paths (in terms of propagation delay)
• QUIC allows to measure receiver induced delay

• draft-gomez-tcpm-ack-pull-01
• Proposing quite the opposite of what we trying

• draft-iyengar-quic-delayed-ack-00, submitted in Jan 2020
• Proposes QUIC extensions for sender-controlled ACKing

• draft-fairhurst-quic-ack-scaling-00, submitted in Jan 2020
• ACK scaling for asymmetric links, however, can be generalized

• Our use-cases, observations, data-set
• Techniques, how we ended up reducing ACK frequency?

• Theoretical analysis
• Experiments with Linux kernel TCP
• Experiments with our proprietary protocol FILLP

• Hoping to generalize some of the techniques
• across WAN scenarios
• and across asymmetric links

• Regardless, different use-cases will demand different behaviour
• The transport scheme should take this into account

• i.e. be flexible on per connection basis

