Sender Control of Delayed ACKs in TCP: Problem Statement, Requirements and Analysis of Potential Solutions

draft-gomez-tcpm-delack-suppr-reqs-01

Carles Gomez

Universitat Politècnica de Catalunya

Jon Crowcroft

University of Cambridge

Status

- Related document: draft-gomez-tcpm-ack-pull
 - Avoid Delayed ACKs issues
 - Enable a sender to trigger immediate ACKs from a receiver
 - Defines a new AKP flag
 - -00 presented at IETF 105 (Montreal)
 - -01 presented at IETF 106 (Singapore)
- Discussion led to working first on requirements, rather than solutions
- draft-gomez-tcpm-delack-suppr-reqs-00
 - 7th March
 - Title: "Delayed ACKs suppression: problem statement, requirements and analysis of potential solutions"
- Revision -01
 - 24th March
 - Title: "Sender control of Delayed ACKs: problem statement, requirements and analysis of potential solutions"

Introduction

- Delayed ACKs: intended to reduce protocol overhead
- Delayed ACKs may be detrimental
 - Segment carrying a message of up to 1 MSS, no app-layer response, 2nd data segment not sent earlier than Delayed ACK timer
 - ACK unnecessarily delayed, negative consequences
- A sender may want to override/restore use of Delayed ACKs at a receiver
- This document:
 - Issues due to Delayed ACKs
 - Requirements for a potential solution
 - Analysis of potential solutions (based on the requirements)

Issues due to Delayed ACKs (I)

Slow Start

- cwnd grows by up to SMSS per ACK covering new data
- Delayed ACKs reduces number of ACKs received by the sender, reducing the rate of cwnd growth
 - Transfer time increase, throughput decrease
 - ABC (RFC 3465) not fully included in RFC 5681
- Delayed ACKs precludes sender behaviors for fast, nonintrusive capacity probing (e.g. chirping)
- High bit rate environments, short segments
 - A sender that uses Nagle, may be prevented from sending more data while awaiting a delayed ACK
 - High underperformance in high bit rate environments (e.g. DNS stateful operations, RFC 8490)

Issues due to Delayed ACKs (II)

- IoT scenarios
 - Memory resources cannot be released until ACK arrival
 - Increased energy consumption
 - Delay might be exacerbated (in some L2 technologies)
- Beyond classic ACK transmission behavior
 - E.g. congestion control for ACKs (RFC 5690)
 - Path asymmetric capacity: ACK arrival rate limits forward path performance
 - Some technologies (DOCSIS, mobile cellular...) apply ACK thinning

Requirements for sender control of Delayed ACKs (I)

- Sender-triggered mechanism
 - Assumption: the sender knows when Del. ACKs should be overriden
 - Sender's own traffic pattern
 - Expectation of application-layer responses
- Per-segment granularity
 - Instead of per-device or per-connection granularity
- Header/Message overhead
 - As the identified problems are about low performance
- Support for enabling generic ACK ratios
 - Would allow to address all the identified issues

Requirements for sender control of Delayed ACKs (II)

- Middlebox traversal
- Safe return to normal Delayed ACKs operation
- Impact on existing TCP functionality
- Impact on future TCP development
- Avoidance of 'hacks'
 - Workarounds may be suboptimal regarding implementation cleanliness
 - May entail other performance issues
- Who is in control?
 - Range of possibilities if the receiver cannot honor the behavior desired by the sender

Potential solutions (I)

- ACK CC (RFC 5690)
 - The sender tells the receiver the ACK ratio R to be used
 - 2-byte "TCP ACK Congestion Control Permitted" option
 - 3-byte "ACK ratio TCP" option
 - Middlebox traversal of new TCP options often regarded as 'bad'

TLP

- Additional ACKs by sending a segment after Probe TimeOut (PTO)
- Significant overhead
- ACK Pull (AKP) flag
 - No overhead, but uses reserved TCP header bits

Potential solutions (II)

New 'ACK Pull' option

- Same semantics as the AKP flag
- Middlebox traversal of new TCP options often regarded as 'bad'

Reuse of existing TCP header fields

- E.g. use 3 of the URG pointer bits as an ACK ratio exponent (for URG=0)
- Semantics become overloaded
 - Both original field functionality and Sender Control of Delayed ACKs not always fully available

'Hacks'

Sending a previously ACKed byte, 'split hack' (Contiki OS)...

Summary: solutions vs requirements

No ideal solution appears to exist...

Ready for WG adoption?

Carles Gomez

Universitat Politècnica de Catalunya

Jon Crowcroft

University of Cambridge