RTCWEB Signaling

Matthew Kaufman

Scope

Web Server

Browser

Browser

Scope

Web Server

HTTP — Already standardized

Beyond that — several possibilities

Browser

Browser

Scope

Web Server

Browser Browser

Media Transport — In scope for IETF — DTLS-SRTP + ICE?

Scope

Web Server Web Server

Signaling federation —
Could be in scope for IETF —
SIP + SDP O/A?

Browser Browser

Scope

Web Server

Browser

Browser

Scope

Web Server

PAFIOAWN (el f
LIRSV VAIN

App (HTML +JS)

Javascript APIs

ODECS

~

HTTP/WS

RTP /

Browser

Scope

Web Server

- N W N

App (HTML +JS)

<$>

Javascript APIs

ODECS

~

API| — In scope for W

HTTP/WS

3C — Several possibilities

RTP /

Browser

ldentified In-Scope Questions

. Should the format of what travels over HTTP
between the web server and the browser be
standardized?

. What should the media transport protocol
be?

. Should the format of what travels between
two federated web servers be standardized?

. What should the Javascript API be like?

Question 1

 Should the format of what travels over HTTP
between the web server and the browser be
standardized?

— Choices:
* No, leave it up to the application developer
* Yes, it should be SIP
* Yes, it should be a lightweight SIP
* Yes, it should be not SIP but use SDP Offer/Answer

Question 1

No, leave it up to the application developer

* Maximum flexibility
* Works for RTC applications other than building phones

Yes, it should be SIP

* Very high implementation bar, and still missing functionality
Yes, it should be a lightweight SIP

» Slippery slope (early media? prack? redirect? Etc?)

* Not actually compatible with existing servers/services

Yes, it should be not SIP but use SDP Offer/Answer

* Does make answering Question 3 (and implementing federation)

easier.

* Does not support cases where early determination of capabilities is
useful

* Does not work well for some multiparty and other “non-phone” use
cases

* Not clear why the IETF or W3C should be telling Javascript
programmers what they can send over XMLHTTPRequest anyway

Question 2

* What should the media transport protocol be?

* Not in scope for these slides, but | think we can solve
this with existing IETF protocols +/- minor changes

Question 3

 Should the format of what travels between
two federated web servers be standardized?

— Choices:

* Yes, it should be SIP
* Yes, it should be something else
* No, that’s up to the two website operators to work out

Question 3

Yes, it should be SIP + SDP O/A

* There are good arguments for this
* This is probably an area that IETF should explore later

Yes, it should be something else
 The arguments for this are weaker

No, that’s up to the two website operators to
work out
* They will probably choose to use SIP and SDP O/A anyway

But this question is NOT the same as Question 1

* |f we need SDP O/A for federation, it doesn’t necessarily
follow that SDP O/A must be used between the browser and
its web site

Question 4

 What should the Javascript API be like?

— Before answering: Is this really an IETF problem,
or is this a W3C problem?

* Choices are on multiple axes

— How much of calling is “built in”?
e How does address selection and NAT traversal work?
e How are CODECs selected?

Question 4

* How much of calling is “built in”?

— One extreme:
* phone = new SIPPhone();

* phone.call(“sipuser@example.com”);

* This would then imply that SIP travels over the wire to
the servers (maybe not even over HTTP!) and SDP
offer/answer is used

* Not much room for innovation here

Question 4

* How much of calling is “built in”?
— Other extreme:

Javascript developer gets a PeerConnection object

Runs an ICE implementation in Javascript using calls that
allow for sending and receiving of STUN probes

Gets a camera object and a codec object and examines the
capabilities

Negotiates the capabilities with the web server using a
proprietary protocol

Explicitly sets the camera and codec properties

Attaches the codec to the PeerConnection and starts
sending

Lots of interesting (though perhaps difficult) Javascript code
to write and new applications to build

Question 4

* How much of calling is “built in”?
— And of course many intermediate choices

Question 4

e How does address selection and NAT traversal
work?
— Option A

e PeerConnection is told what to connect to by being
passed a blob of SDP

* PeerConnection runs ICE, generates more blobs of SDP

containing ICE candidates as events, these are
transported to the other end and pushed into the

PeerConnection

Question 4

e How does address selection and NAT traversal
work?
— Option B

e PeerConnection is told what to connect to by being
passed a candidate address or list of candidate

addresses

* PeerConnection runs ICE, generates blobs of SDP (or
some other format) containing ICE candidates as
events, these are transported to the other end and
pushed into the PeerConnection

Question 4

How does address selection and NAT traversal
work?

— Option C

* PeerConnection has APIs that let the developer
implement ICE or any equivalent algorithm that meets
the “STUN probe is used to prove far end wants to
receive media” security requirement

Question 4

e How does address selection and NAT traversal
work?

— This is discussed in draft-cbran-rtcweb-nat-01

Question 4

How are CODECs selected?

— SDP offer/answer is used between the
PeerConnection objects at each end over their
event-based signaling channel and the results
determine the CODECs in use

— Direct Javascript APIs allow the developer to
query for capabilities and then select a CODEC and
specify necessary parameters

Question 4

* SDP offer/answer is used between the
PeerConnection objects at each end over their

event-based signaling channel and the results
determine the CODECs in use

* Tempting, as you already need this channel for ICE

* Actually, the Javascript can manipulate the SDP that
comes out and even parse it and convert it to another
form... so this doesn’t mandate “sending SDP over the
wire” (Question 1)

e But it would probably encourage developers to simply
pass the SDP intact from end to end

Question 4

Direct Javascript APIs allow the developer to
query for capabilities and then select a CODEC

and specify necessary parameters

* Allows for the building of applications which query for
capabilities before offering calling to the user

* Allows for more complex multi-party calling (know in
advance which codec one could switch everyone else
to in order to support a new joiner with a more limited
set)

* Leverages the Device APIs that are coming into
existence

Question 4

* Direct Javascript APIs allow the developer to
query for capabilities and then select a CODEC
and specify necessary parameters

e STILL ALLOWS for SDP Offer/Answer on the wire, simply
by writing some Javascript to create it

o STILL ALLOWS for SDP Offer/Answer in the federation

case, by creating SDP at the browser in Javascript or up
at the server

Question 4

* Direct Javascript APIs allow the developer to
query for capabilities and then select a CODEC
and specify necessary parameters

e COULD STILL LEVERAGE the MMUSIC work performed
for each new CODEC by exposing the capabilities and
parameter setting as compatible strings, rather than
individual Javascript knobs

 COULD EVEN use SDP, but not as SDP offer/answer,
instead as a command mechanism as in other protocols
like MGCP

Recommendations

* Try to avoid solving problems that are out of
scope

* We have enough that are in scope already

* Try to maximize the flexibility by turning the
browser into the next operating system in
which we create RTC applications, not by
bolting a phone on the side

Therefore

Question 1: No. Up to the app developer, just as in web
email clients

Question 2: Probably DTLS-SRTP, possibly with multiplexing
added, and ICE for NAT traversal

Question 3: Leave this up to the site operators for now and
revisit whether additional SIP (or other) work is needed at a
later time

Question 4: Don’t build a SIP phone into the browser

* Implement ICE in Javascript if practical, otherwise implement ICE
natively and pass the ICE candidates in and out via strings in a

reasonable format (perhaps even SDP)

* Don’t build SDP offer/answer into the PeerConnection object (where
it doesn’t belong anyway) for CODEC selection, instead expose APIs
for querying capabilities and setting CODEC and CODEC parameters. If
possible, leverage types and parameter serialization created by
MMUSIC.

