Stateless 4v6 motivation and

An operator's view of stateless solutions

Satoru Matsushima

Document Rationale of the motivation draft <draft-ietf-softwire-stateless-4v6-motivation>

Avoid as much as possible biased analysis

Motivations are sketched from an operator standpoint, with a focus on the fol lowing dimensions

Network Architecture \& Planning
Network Operations \& Maintenance
Network \& Service Evolution
CAPEX Optimization opportunities

ToC of the motivation draft

Technical and Operational benefit
Network Dimensioning
No Intra-domain constraint
Logging
No additional control protocol
Preserve current practice
Planned maintenance
Reliability and robustness
Multi-vendor redundancy
Simple qualification
Implicit Host Identification for internal
services
Organizational Impact

Discussions

Dependency between IPv4 and IPv6 Address

IPv4 Port utilization Efficiency
IPv4 Port randomization

Address allocation consideration in terms of intra/inter domain

There are several cases:

1. One operational domain for both IPv4 and IPv6 Operated by one policy
must have consistent addressing policy among IPv4 and IPv6 for stateles s 4v6
2. Each IPv4 and IPv6 is operated by individual domain individual NOC for IPv4 and IPv6, or individual AS for IPv4 and IPv6
might have different addressing policy among IPv4/IPv6 for stateless 4v6

Stateless 4v6 'agnostic' IPv6 prefix allocatio n is happened in IPv6 operation!

IPv4 NOC/AS 4rd BR

IPv6 Router
IPv6 NOC/AS

IPv6 CPE

4rd CE

Conclusion

Stateless 4v6 agnostic IPv6 prefix allocation would be happened
At least, standardized 4 v 6 address mapping solution must be avoid to assign well-known-IPv4 address and ports to customers w/o stateless 4v6 aware IPv 6 prefix allocation
e.g,

- 0.0.0.0/8, 127.0.0.0/8, 224.0.0.0/3, etc.,
- $0 \sim 1023$ or 4096 of TCP/UDP ports

The solution should support a scenario of which an IPv6 CPE sub-delegates a prefix to it's a connected 4 v 6 CE

