
Analysis of Port Indexing Algorithms

draft-bsd-softwire-stateless-port-index-analysis

Softwire WG Interim Meeting-BEIJING, September 2011

M. Boucadair, N. Skoberne and W. Dec

Terminology Reminder

Rationale

- The main goal of -00 if to understand and analyze the various port indexing schemes proposed so far
- Then, hopefully be able to **compare** them against a set of criteria
- The current version of the draft uses a set of properties to characterize each algorithm but no comparison is provided yet

Rationale (Cont'd)

- Two aspects need to be analyzed separately (// or sequential)
 - Port set indexing scheme
 - Address format to embed the port information in an IPv4-translatable IPv6 address/prefix
 - Port Set Index is embedded in an IPv4translatable IPv6 prefix
 - Port Number or Port Set Index is embedded in a IPv4-translatable IPv6 address

Comparison Criteria

- Not covered in -00
- "Requirements for Extending IPv6 Addressing with Port Sets" (draft-boucadair-softwirestateless-requirements) can be as a starting point
 - Port utilization efficiency
 - Ability to accommodate various address sharing ratios
 - Support of differentiated port sets
 - Compliant with RTP/RTCP applications
 - Ability to assign 0-1023 to a given user
 - Etc.

Address Format Properties

- Several properties are defined in -00
 - Domain Prefix64 Flexibility
 - Ability to support PREFIX64s of different lengths
 - IPv4 traffic isolation
 - Ability to distinguish between IPv4-embedded IPv6 traffic and native IPv6 traffic
 - Encode Routing Bits in 64 bits
 - Ability to encode all routing bits in 64
 - Applicable only for the scenario in which IPv4translatable IPv6 prefix is used also for native IPv6 communications

Address Format Properties

Property	Description			
Complexity:	Reflects the complexity level of understanding the algorithm and the expected complexity to configure an implementation			
Address Sharing Ratio:	Number of users sharing the same IPv4 address			
Number of ports in a Port-Set:	Number of assigned ports			
Minimal Sharing Ratio:	Minimum number of users able to share the same IPv4 address			
Maximal Sharing Ratio:	Maximum number of users able to share the same IPv4 address			
Guessing Complexity of a Valid Port:	Level of complexity to guess a valid port within the assigned port set			
Guessing Complexity of the whole Port-Set:	Level of complexity to guess the whole assigned port set			
Excluded ports:	Indicates whether ports are from the assigned port set. This provides a hint about the efficiency of the port set algorithm			
Support of 0-1023 port range:	Ability to assign 0-1023 range to a given user			
Differentiated Port Sets (Bound to the same IP address):	Capability to assign port sets of different sizes to customers assigned with the same IPv4 address			
Differentiated Port Sets (Network Level):	Capability to assign port sets of different sizes to customers attached to the same network			
Compliance with RTP/RTCP:	Compatibility with RTP/RTCP applications			

NOTES

- 1. In each analyzed port derivation algorithm, an attacker may implement a redirection loop to detect a significant amount of allowed ports
 - For all monotonously scattered schemes, the whole Port Set may be deduced by extrapolation
 - ... while this is not applicable for contiguous port ranges because no information about port bounds is leaked in the IPv4-translatable IPv6 address)
- 2. Identifying the whole port set may be seen as a "risk" to identify a given host
- 3. Excluding ports may be seen as a waste of port

Analyzed Port Indexing Algorithms

- Only algorithms used for stateless 4/6 are covered so far
 - 1. I-D.boucadair-behave-ipv6-portrange (portrange)
 - 2. I-D.xli-behave-divi (*divi*)
 - divi-pd has been also documented
 - 3. I-D.murakami-softwire-4v6-translation (*murakami-4rd*)
 - 4. I-D.murakami-softwire-4rd (murakami-4rd)
 - 5. I-D.despres-softwire-4rd-addmapping (*despres-4rd*)
 - 00 version was complex while updated version is more simpler
 - It is as a variant of portrange

Softwire Interim Meeting

Analyzed Port Indexing

Property	portrange	nc portrange	divi	murakmi-4rd	despres-4rd
Complexity:	Low	Low	Medium	Medium	Low
Address Sharing Ratio:	1:2^(L-n-32)	1:2^(L-n-32)	1:N (1:2^E)	1:2^p	1:N (N up to 12)
Number of ports in a Port-Set:	2^(48-L+n)	2^(48-L+n)	2^(16-E)	Note (1)	2^(16-N) (N up to 12)
Minimal Sharing Ratio:	1:1	1:1	1:1	1:1	1:1
Maximal Sharing Ratio:	1:65536	1:65536	1:4096	1:32768	1:4096
Guessing Complexity of a Valid Port:	Low	Medium	Medium	Medium	Medium
Guessing Complexity of the whole Port-Set:	Medium	Low	Low	Medium	Low
Excluded ports:	None	None	0-1023	0-4095	None
Support of 0-1023 port range:	Supported	Not Supported	Not Supported	Not Supported	Not Supported
Differentiated Port Sets (Bound to the same IP address):	Supported	Supported	Not Supported	Not Supported	Supported (Note (3))
Differentiated Port Sets (Network Level):	Supported	Supported	Supported (Note (2))	Supported (Note (2))	Supported (Note (2))
Compliance with RTP/RTCP:	Supported	Not Supported	Not Supported	Supported	Supported

Note (1): See the formula in the I-D. For each additional bit beyond 12 bits of port-indexing (i.e., when the head is < 4 bits), the number of ports that cannot be used increases by a factor of 2 from the 4096 limit. Thus, for a 13 bit port-set-id, only ports above 8k can be used, ports above 16k for a 14 bit port-set-id, and for a 15 bit port-set-id, only ports above 32k can be used assigned, etc. The port usage efficiency with a 15 bit port-set id is 50%.

• Note (2): This can be supported if different BR are used

• Note (3): This can be supported if the destination port number is embedded in the IPv4-translatable IPv6 address

Misc

- Other algorithms have been proposed but their adaptation to a stateless 4/6 scheme would lead to a complex Port Indexing, e.g.-
 - 1. Generating Random Port Set and Non-Contiguous Port Range, e.g.,
 - Assign 64 Port Ranges with one single Port Mask: e.g., if the Port Mask is set to 768 and the address is shared between 4 PRDs, 64 contiguous Port Ranges can be assigned to each PRD, there is always one within the span of the first 1024 well-known port values.
 - Assign 128 Port Ranges with one single Port Mask: e.g., if the Port Mask is set to 496 and the address is shared between 32 PRDs, 128 contiguous Port Ranges can be assigned to each PRD, each one with a length of 16 port values. The first two Port Ranges are both in the well-known ports span (i.e. 0-1023).
 - Reference: draft-boucadair-pppext-portrange-option
 - 2. Dynamic Port set
 - Reference: draft-rqb-dynamic-port-ranges

Next Steps

• Complete the comparaison