
JSEP Overview
Justin Uberti
IETF 82.5

Topics
● Status
● Why JSEP?
● Theory of Operation
● Example Call Setup
● Implementation Considerations
● Contrast between JSEP and ROAP

Status
● draft-uberti-rtcweb-jsep-00 posted last week
● -01 about to be posted; fixes several issues

○ Clarified what operations change state
○ Fixes asymmetry in original offer/subsequent offer

call ordering
○ Associates candidates with proper m= lines
○ Knows the number of m= lines to gather for
○ Tells app when candidate gathering is complete, and

provides getters for full lists of candidates
○ connect() renamed to startIce()
○ SDP_PRANSWER added to allow non-final answers

Goals
● Allow easy translation to common signaling

protocols and architectures
● Support early transport negotiation
● Allow local description to be changed by app
● Change session parameters at any time
● Allow direct manipulation of session state
● Give app as much flexibility as possible, now

and in the future

Non-goals
● Super-simple API
● Replace SDP
● Offer generation in JS (at least not right now)

Web App to Legacy Client

Web App / Browser

Web Server

Desktop App

App-specific/HTTP XMPP

XMPP Server
 XMPP

SRTP/ICE

SIP In Browser

Web App / Browser

Web Server

Softphone

HTTP SIP

SIP Proxy

SRTP/ICE

IP

SIP/HTTP

Web to Web

Web App / Browser

Web Server

ROAP/HTTP

SRTP/ICE
Web App / Browser

ROAP/HTTP

Signaling

Conventional App Diagram

Incoming Media
Processing Media Transport Outgoing Media

Processing

ICE State Machine

Application

Local Session
Description

Remote Session
Description

App

Runtime

Differences in Signaling
Different signaling protocols have different
features and mechanisms
● Candidate handling
● Glare handling/Tie breaking
● Adding or removing sources or sessions
● RTP Session updates

Core Problem
It's hard to have a generic signaling
mechanism that can map faithfully to all
signaling state mechanisms

Needs of the Media Layer
● Local format description

○ What I want/am going to do
● Remote format description

○ What the other side wants/is going to do
● Local/remote transport info

○ Where is media going to go, and how

Signaling is a mechanism to obtain this
information

JSEP Key Concepts
● Signaling and transport are separated
● Signaling state moved into application code
● Media controlled via local and remote

session descriptions (SDP blobs)
● The "how" of the signaling is left to the

application; only the results of the
signaling matter

JSEP App Diagram

Local Media
Processing Media Transport Remote Media

Processing

ICE State Machine

Application

Local Session
Description

Remote Session
Description

App

Runtime

Signaling

Call Setup: Offer
pc = new PeerConnection();
pc.addStream(localStream, null);
offer = pc.createOffer(null);
pc.setLocalDescription(SDP_OFFER, offer);
signalSocket.send(MakeInitiate(offer));

Call Setup: Offer

Local Media
Processing Media Transport Remote Media

Processing

ICE State Machine

Application

Local Session
Description

Remote Session
Description

App

Runtime

Signaling stack

Call Setup: Starting ICE
pc.startIce();
iceCallback(media, transportInfo);
signalSocket.send(MakeTransportInfo(
 media, transportInfo));

// later
signalSocket.onmessage(transportInfo);
pc.processIceMessage(transportInfo.media,
 transportInfo.data);

Call Setup: Starting ICE

Local Media
Processing Media Transport Remote Media

Processing

ICE State Machine

Application

Local Session
Description

Remote Session
Description

App

Runtime

Signaling stack

Call Setup: Answer
onmessage(accept);
answer = ParseAccept(accept);
pc.setRemoteDescription(ANSWER, answer);
onaddstream(remoteStream);
onopen();

Call Setup: Answer

Local Media
Processing Media Transport Remote Media

Processing

ICE State Machine

Application

Local Session
Description

Remote Session
Description

App

Runtime

Signaling stack

Active Call

Local Media
Processing Media Transport Remote Media

Processing

ICE State Machine

Application

Local Session
Description

Remote Session
Description

App

Runtime

Signaling stack

Call Update: Add Stream
pc.addStream(localStream2);
offer = pc.createOffer(null);
pc.setLocalDescription(SDP_OFFER, offer);
signalSocket.send(MakeUpdate(offer));
...
onmessage(accept);
answer = ParseAccept(accept);
pc.setRemoteDescription(SDP_ANSWER, answer);

Call Update: Glareless Add
pc.addStream(localStream2);
offer = pc.createOffer(null);
delta = Diff(pc.localDescription, offer2);
pc.setLocalDescription(SDP_OFFER, offer2);
signalSocket.send(MakeStreamAdd(delta));
...
onmessage(remoteDelta);
onmessage(ackOffer2);
pc.setRemoteDescription(SDP_ANSWER,
 MakeDesc(remoteDelta));
signalSocket.send(MakeAck(remoteOffer));

Call Update: Hold
offer = pc.createOffer(null);
offer = AppendSendOnly(offer);
pc.setLocalDescription(SDP_OFFER, offer);
signalSocket.send(MakeHold(offer));

Things You Can Do
● Send candidates as they are gathered
● Add/remove sources simultaneously
● Change session parameters at any time

(with or without an O/A exchange)
● Control local session description that is

generated and sent
● Rehydrate a session from stored state

Impl Considerations

New APIs: Creating SDP
createOffer(hints)
Creates a session description based on the
current local media state; |hints| allows for
some customization. Does not reserve
resources, or change state.

createAnswer(offer, hints)
Like createOffer, but uses |offer| as input to
create a compatible session description.

New APIs: Hints
Hints are shortcuts to allow customization of
generated offers/answers

Example: Only have audio sources, but want to
receive video from remote side; pass in
MediaHints with has_video set to true to add a
m=video section with no sources

New APIs: Applying SDP
setLocalDescription(type, desc)
Applies the local description, e.g. recv codecs,
encryption keys. Changes state.

setRemoteDescription(type, desc)
Applies the remote description, e.g. send
codecs, decryption keys.

Throws exception on invalid state or params

New APIs: ICE
IceCallback(media, transportInfo)
Callback function that receives transport
information that needs to be signaled

processIceMessage(media, transportInfo)
Invoked to handle received transport
information

Message Formats
Session Descriptions
Standard SDP

Transport Info
a=ice-candidate lines
a=ice-ufrag, password lines
a=fingerprint (for DTLS)
a=group (for BUNDLE)

Complexity
● JSEP does require more code (~60 lines for

a basic example, w/o glare handling)
● But can be easily encapsulated within a JS

library
● Moreover, this library can perform protocol

translation too (e.g. convert to SIP, XMPP,
or ROAP)

● Powerful API/JS libraries is consistent with
overall web application trends (e.g. WebGL,
IndexedDB)

JSEP vs ROAP
Key differences:
● Signaling mechanism lives in app/JS
● Early transport negotiation supported
● App has control over local description
● App can change session parameters at any

time, without O/A if desired
● App can restore session from cached state
● More JS code, but under app control

Real-World Benefits
● Proven model; Hangouts now using a form

of this API
● Early candidate gathering improves start

time by over a second in >20% of calls
● Glare conditions become a non-issue for

many apps
● Features can be added without new browser

APIs (e.g. one-way video, hold, res change)
● Calls can persist across application

upgrades

Questions?

