
ROAP Design Rationale
Cullen Jennings
January 2012

ROAP Design Rationale

• Be the simplest protocol possible that can do RFC 3264
Offer/Answer with SDP

• Concerns about an SDP-based interface:

1. Forces browser to be conscious of SDP offer/answer state

2. Speed of call setup

3. State resurrection on page reload

About SDP...

• The SDP Offer/Answer pair define what media engine is
sending and capable of receiving

• Offer/Answer pair changes over time. RFC 3264 provides the
rules to keep consistent state between the two sides

• Allows the state to evolve in a linear versioned line, but does
not allow branching or merging

SDP Streams and Formats

• RFC 3264 - Sec 5
If multiple formats are listed,
it means that the offerer is
capable of making use of any of
those formats during the
session. In other words, the
answerer MAY change formats in
the middle of the session,
making use of any of the
formats listed, without sending
a new offer.

If multiple media streams of
the same type are present in an
offer, it means that the
offerer wishes to send (and/or
receive) multiple streams of
that type at the same time.

 v=0
 o=bob 123 1 IN IP4 192.0.2.1
 s=-
 c=IN IP4 192.0.2.1
 t=0 0
 m=video 5134 RTP/AVP 31 34
 a=rtpmap:31 H261/90000
 a=rtpmap:34 H263/90000
 m=video 5132 RTP/AVP 31 34
 a=rtpmap:31 H261/90000
 a=rtpmap:34 H263/90000

Offer with two video streams each offering
two codecs

Managing codec resources - From RFC 3264
Allocating
Once the offerer has sent the offer, it MUST be prepared to
receive media for any recvonly streams described by that offer.
It MUST be prepared to send and receive media for any sendrecv
streams in the offer, and send media for any sendonly streams
in the offer

Sending Media
When the offerer receives the answer, it MAY send media on the
accepted stream(s) (assuming it is listed as sendrecv or
recvonly in the answer).

Once the answerer has sent the answer ... The answerer MUST be
prepared to receive media for recvonly or sendrecv streams
using any media formats listed for those streams in the answer,
and it MAY send media immediately.

Freeing
The offerer MAY immediately cease listening for media formats
that were listed in the initial offer, but not present in the
answer.

Resource allocation / deallocation flow

Modifying the SDP offer/answer pair state

• RFC 3264
At any time, either agent MAY generate a new offer that updates
the session. However, it MUST NOT generate a new offer if it has
received an offer which it has not yet answered or rejected.
Furthermore, it MUST NOT generate a new offer if it has generated
a prior offer for which it has not yet received an answer or a
rejection.

When issuing an offer that modifies the session ... the version in
the origin field MUST increment by one from the previous SDP.

If an SDP is offered, which is different from the previous SDP,
the new SDP MUST have a matching media stream for each media
stream in the previous SDP.

The offerer MUST be prepared to receive media with both the old
and new types until the answer is received, and media with the new
type is received and reaches the top of the playout buffer.

Of course, if the offered stream is rejected, the offerer can
cease being prepared to receive using the new port as soon as the
rejection is received.

How the media engine ends up needing outstanding offer state

What is SDP State
• Resources allocated for Old and New SDP

• When to free Old resources, when to free New
Offer
 v=0
 o=bob 123 3 IN IP4 172.168.1.1
 s=-
 c=IN IP4 172.168.1.1
 t=0 0
 b=TIAS:50780
 b=maxprate:10.0
 a=group:LS ls1 ls2
 m=audio 65422 RTP/AVP 97 0
 a=mid:ls1
 a=rtpmap:0 PCMU/8000
 a=rtpmap:97 AMR/8000
 a=rtcp:53020
 a=fmtp:97 octet-align;
 m=video 0 RTP/AVP 31
 m=video 53000 RTP/AVP 34
 a=mis:ls2
 a=rtpmap:32 H263/90000
 a=rtcp-mux
 m=audio 51434 RTP/AVP 110
 a=rtpmap:110 telephone-events/8000
 a=recvonly

Answer
 v=0
 o=alice 123 3 IN IP4 172.168.2.2
 s=-
 c=IN IP4 172.168.2.2
 t=0 0
 m=audio 49170 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 m=video 0 RTP/AVP 31
 a=rtpmap:31 H261/90000
 m=video 53000 RTP/AVP 34
 a=rtpmap:32 H263/90000
 m=audio 53122 RTP/AVP 110
 a=rtpmap:110 telephone-events/8000
 a=sendonly

SDP Hold

• RFC 3264
If the stream to be placed on hold was previously a sendrecv
media stream, it is placed on hold by marking it as sendonly.
If the stream to be placed on hold was previously a recvonly
media stream, it is placed on hold by marking it inactive.

• Hold inherently involves the media engine no longer sending
certain media packets and the SDP offer/answer pair being
updated to reflect that

• PeerConnection needs to be able to tell JS Application when
this sort of SDP change is needed. May also need this for
changing media for congestion control reasons

(Note to webrtc folks: you want an API for both hold and
mute)

Timing for quick call setup

Proposal to add Candidates message to ROAP

• Hard to separate the transport information out of SDP but there is one thing that looks
like it could be done to allow “trickle ICE”

• Make a new ROAP message called CANDIDATE with new candidates.This message can be
sent at any time and each element in the array augments the candidates in the previous SDP
offer/answer

• CANDIATE message structure: array of sets of candidate lines

• The n’th element in the array is added to the candidates for the n’th “m=” line

• Believe (hope) this will not break ICE because ICE already allows new candidates in form of
peer reflexive at any point in time

• Need cost/benefit analysis of performance improvement versus potential problems

• Thoughts? Experiment with this try out?

What parts of SDP involve the transport?

Offer
 v=0
 o=bob 123 3 IN IP4 172.168.1.1
 s=-
 c=IN IP4 172.168.1.1
 a=setup:actpass
 a=fingerprint: SHA-1 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB
 t=0 0
 b=TIAS:50780
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio 65422 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706431 10.0.1.1 8998 typ host
 a=candidate:2 1 UDP 1694498815 192.0.2.3 45664 typ srflx raddr
 a=rtcp:53020
 a=rtcp-mux
 a=sendrecv
 a=tcap:1 UDP/TLS/RTP/SAVP RTP/AVP
 a=pcfg:1 t=1

Web Server Media Engine Control

Resurrection on page reload

Proposal: JS to control update timing

• Current ROAP API calls a callback with new SDP anytime
something changes

• JS expected to send SDP immediately

• Instead it could call a callback indicating “conditions changed;
new SDP required”. The JS Application would then be able to
ask for the new SDP and send it

• Not clear where this flexibility helps but it would not be
hard to add and would match JSEP in this regard

• Thoughts? Should we do this?

Design Choices

Path Pros Cons Time Line

Use SDP Offer Answer Finished and deployed Ugly 4 months

Separate transport out
of SDP

architectural purity
(Others ?)

Hard to figure out
implications of what

would break
12 months

Replace SDP
SDP is hideous

(Others ???)
Very hard to deploy many years

