I2RS Interim Group #7: Topology

Presenter:

Group Members: Jan Medved, Shane Amante, Alex Clemm, Lisa Huang, Joel Halpern, Adrian Farrell

Use Case Description

- Topology of the network
 - And how it relates to I2RS
- Standardized information model
 - Representing multiple layer networks
 - In support of PCE, Capacity Planning, and Traffic Engineering, ad ALTO
 - Represent multiple layers
 - With relationships between and within layers

Scope and Scale

- Representing service layers
 - Within the administrative scope
- The graph elements represent
 - Devices, Ports, links (unidirectional)
 - Abstractions thereof
 - LAG, ECMP Groups, logical nodes
 - Graph elements have properties
 - Reachable addresses, Customers, bandwidth
 - Tagging for which "kind" of operation to use this in
 - For example, which layer path computation should use this
 - Or for filtering

Operational Scope

- The primary focus here is information abstraction
- At each layer, needs information at the same dynamics as the modeled network changes
 - May be notifications or polling
 - Depth and breadth depend upon use case
- This needs also to be usable for handling requests for changes to the topology
 - Not all topology elements are equally mutable
 - Don't know write rate? Seems to be use case dependent
 - Computations support planning for protection switching
 - Protection Switching is in the network
 - Writes have to be damped
- Need filtering and recursion

12RS Differences

- Standard API / Protocol for
 - Active and passive elements
 - Representing relationships between elements in distinct layers
 - Dependencies vertically and horizontally
 - Across vendors
 - Agreed Information about network elements
 - Consolidation of detail and abstract models
 - Including device and network models
 - Have to be able to talk about service abstraction
 - Including application specific or customer specific
 - Integration of information gathering, abstraction, and control

Specific Uses Cases to Solve

- Provide a Topology Abstraction that can be used for network oriented decisions
 - These may be actuated through other mechanisms
 - Which may be a higher layer application
 - Failure implications analysis (can also be problem troubleshooting tool)
 - Implications of node failure on
 - Multi-Layer, e.g. horizontal and vertical propagation
 - Plan is to use identities to correlate with physical devices
 - VPN Service Provisioning
 - Including customer attachment capability
 - Capacity Planning and Traffic Engineering
 - Demands may be expressed in terms of observed pairs (e.g. city pair) or reservation requests
 - Capacity may be in terms of measured utilization or bandwidth reservations
- Populate this Topology Abstraction

Target

- To be useful, this model has to be exposed via protocol
- To be realizable, we have to be able to collect the needed information from the network
- No one thing can project the entire internet

Graph element properties

- Relationships to other elements
 - All are one to many unidirectional
 - Connected to
 - Used by
 - Uses
 - Service tags
 - Need to indicate direction of failure propagation
 - Containment may be a subcase of this
 - Minimum requirements (like number of LAG elements) are additional properties
- Extensible kinds of elements
- Extensible properties of defined elements

Kinds of Graph Elements

- Network Links
- Network Nodes
 - Router Logical or physical
 - Switches?
 - Route Reflector
 - Service delivery node needs subtype
 - Not about Chassis
- Network Ports
 - Physical
 - Logical
 - Nested
 - Tunnel
- Containers?
- Customer?

General Graph Element properties

- Identity
 - With sufficient clarity to correlate to other models
 - May need multiple
- Network Location?
 - Geography?, Pop?, IX?
- Administrative and Operational State
- Shared Fate tagging
 - separate from failure propagation