ICN Research Challenges draft-kutscher-icnrg-challenges-01

Dirk Kutscher, Suyong Eum, Kostas Pentikousis, Ioannis Psaras, Daniel Corujo, Damien Saucez, Thomas Schmidt, Matthias Waehlisch

Document Purpose

• WHY

• Problems and pain points in today's networks

HOW can ICN help Eupdomontal ICN con

Fundamental ICN concepts

• WHAT to do in ICNRG

• Research challenges, important topics

Possible RESULTS Impact on IETF work

Structure

- 1. Introduction
 - Example pain point, example ICN solution, brief concept overview
- 2. Problems with information distribution today
 - Inefficiencies, security issues
- 3. Concepts
 - Receiver-driven communication model based on named data objects (NDOs) as a first-order network service

4. Research Challenges

- naming, security, routing, name resolution, transport, caching, interconnection, management, mobility management
- 5. Impact on IETF work
 - Anticipated changes to Internet architecture and protocols, relation to existing work (e.g., CDNI)

Summary of Changes

- Added terminology definitions
 to be extended in future revisions
- Split naming and security into two sections
 - naming and data authenticity
 - security (network security)
- Extended mobility management
 listed specific research challenges

Summary of Changes (cont.)

- Extended wireless networking
 - added specific sample scenario
 - added specific research challenges
- Extended transport service
 clarification on flows in ICNs
- Extended in-network caching
 o discussing deployment cost
- Extended network management

Naming and Data Authenticity

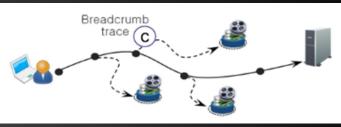
- naming and security (data authenticity) related
 - name-data binding integrity
 - binding to real-world identities
- names can also enable aggregation
 - routing information
- corresponding different approaches
 - hierarchically structured vs flat-ish
- research challenges
 - naming static vs. dynamic objects, requestor privacy, NDO updates, managing accessibility

Security

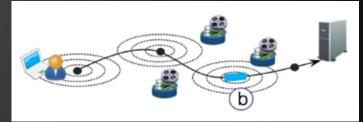
Authentication

- communication channel ends cannot be trusted
 - objects must be authenticated, not channels
 - how robust can authentication be with time and size?
- currently some overlap with naming section -- to be resolved in next revision

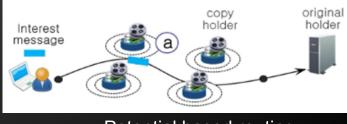
State and routing


- if routers keep state (e.g., PIT in CCN), how do we make sure an attacker cannot overload them?
- if routes are composed of names, how to avoid attackers to inject plethora of names, forwarding entries?
- Traffic aggregation and filtering
 - requests can be aggregated, hiding their origin
 - how to filter traffic? (e.g., source filtering)

Routing


- No changes since the last draft.
- Currently discussing
 - How to deal with caching data objects from a perspective of ICN routing?
 - Caching data objects are a far more and volatile than an original data object in repository.
 - Incorporating the large number of caching data objects into one ICN routing algorithm may
 - cause significant control overhead traffic.
 - make the design of the routing algorithm complicated.
 - E.g., a possible approach?
 - separating an ICN routing into two parts:
 - Main routing algorithm: explicit routing to an originally published data object to guarantee reachability.
 - Subsidiary routing algorithm: implicit routing to caching data objects to achieve availability.

Routing - cont


- Some details... so a user request is always forwarded to an original content holder due to the main routing algorithm, but the request MAY find a copy on the way.
- Currently available approaches are illustrated (righthand side), which use the idea in the first bullet point.
- Research question:
 - How to take advantage of highly available copies in in-network caches without introducing too much troubles(?) to an ICN routing

Breadcrumb routing

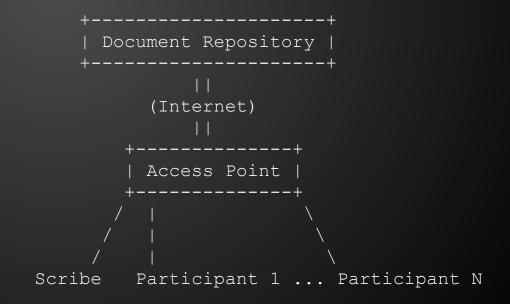
On demand routing

Potential based routing

Mobility Management

- Leverage intrinsic ICN behavior
 - IP mobility management is based on anchors
 - MIP, PMIP, ... 3GPP
 - Distributed mobility management (DMM)
 - The set of DMM requirements also calls for ondemand/dynamic mobility management
 - Do we continue along the same path
 - i.e. use tunnels in information-centric network...
- Mobility impact on
 - Different content requirements/preferences (QoS?)
 - Seamless handover performance
 - Caching reliance
 - Receiver vs. source mobility

Mobility Management Challenges (1/2)


- How can mobility management take full advantage of native ICN primitives?
- How do we avoid the need for mobility anchors in a network that by design supports multicast, anycast and location-independent information retrieval?
- How can content retrieval mechanisms interface with specific link operations, such as identifying which links are available for certain content?

Mobility Management Challenges (2/2)

- How can mobility be offered as a service, which is only activated when the specific user/content/conditions require it?
- How can mobility management be coordinated between the node and the network for optimization and policing procedures?
- How do we ensure that managing mobility does not introduce scalability issues in ICN?

Wireless Networking

- Principal idea: enable ICN leveraging wireless networks' intrinsic broadcast capabilities
- Wireless vs. mobile
- Example scenario

Wireless Networking Challenges

- Can ICN use wireless resources more frugally
- How can we leverage the broadcast nature of the medium?
- Wireless-oriented ICN protocol stack?
- How about promiscuous operation coupled with opportunistic caching?
- Remember conversational services...
- Network conding? CoMP? MIMO?

Transport Services (no major changes)

- Accessing named data -- not necessarily individual hosts
 - notion of flows changing
 - e.g., ICN multi-source communication will still have flows, but in more dynamic fashion
 - RTT measurements etc. may not be meaningful for a set of requests in a single application/object context
 - out-of-order delivery more common

In-Network Caching (no major changes)

- cache placement
- content placement
- request-to-cache routing
- Added text on cost considerations for caching
 - e.g., ICN caching would enable operators to tradeoff CAPEX for caches against traffic localization etc.

Network Management - 1/2

• Beyond FCAPS

- Empower other mechanisms of the architecture
 Mobility, Security, Transport, ...
- Optimize their operation
 - Interchanging information between systems
- Beyond node or link centric
 - Change the way of thinking about mgmt possibilities
 - Figure out how to maintain current mgmt actions
 - Devise new mgmt actions based on ICN
 - Even by employing the support of host-centric protocols

Concerns

- Scalability
- Many ICN Flavours

Network Management - 2/2

• Way to go

- Expose conceived mechanisms to new scenarios
 - Different ICN deployments
 - Large-scale testing
- Figure out interaction possibilities
 - Secure Management
 - Management while on the move
 - Management-optimized Transport
- IETF Impact
 - "readiness" of different networking mechanisms towards the future
 - Exposure of existing mechanisms to new scenarios
 - Bring ICN to the forefront of new deployment possibilities

Received Feedback

- Management accessibility (Scott Brim)
 - privacy of communication
 - obtaining an unpublished object, providing requestor authentication and transport encryption
 - Imaginable in a hybrid approach -- how to achieve in pure ICN?

TODO

- Eliminate redundancies for 4.1 (naming and data authentication) and 4.2 (security)
 - probably have a 'naming and security' section and a 'other security' section
- Make this draft-icnrg-challenges

More Feedback?

- Questions to ask:
 - level of detail OK?
 - overall selection of topics OK?