Hypergraph Mining

D.Papadimitriou (dimitri.papadimitriou@alcatel-lucent.com)

Graph-based modeling

- Graph-based modeling provides
 - Foundation for phenomena and/or problems involving one-to-one relationships (functional) and/or interactions (dynamic) among entities
 - Allows data analysis and mining to understand relations between these entities -> Graph mining
- In communication networks, "dyadic" deterministic graphs but other types of graphs exist (e.g. Cayley graph, stochastic graphs, bipartite graphs, etc.)

Graphs

- Unweighted Graph G = (V,E)
 - V : set of vertices, |V| = n
 - E : set of edges, |E| = m
 - Elements of E are pairs (u,v) where $u, v \in V$
 - An edge (v,v) is a self-loop
- Weighted Graph G = (V,E,ω)
 - V : set of vertices, |V| = n, E : set of edges, |E| = m
 - ω = function which associates to each edge a weight

• Undirected graph

- The edge pairs are unordered
 - E defines symmetric relation
 - $(u,v) \in E$ implies $(v,u) \in E$, (u,v) and (v,u) corr. to the same edge
- **Directed graph** (digraph)
 - The edge pairs are ordered

Example: network modeling

- Network topology modeled as undirected unweighted graph G = (V,E)
 - AS-level topology: vertices (abstract nodes) set V, |V| = n, represents the autonomous systems (AS), and edges (or links) set E, |E| = m, represents the interconnection between AS pairs (u,v), u, v ∈ V
- Network topology modeled as undirected weighted graph G = (V,E,ω)
 - Router-level topology: vertices (nodes) set V, |V| = n, represents routers or inter-connection points, and edges (or links) set E, |E| = m, represents nodes interconnection

Example: path modeling

- Path from source s to destination t, p(v₀=s,v_m=t): node sequence [v₀(=s),v₁,...,v_{i-1}=u,v_i,...,v_m(=t)] such that v_i is adjacent to v_{i-1}, (v_{i-1},v_i) ∈ E(G), ∀ i
- Distinction between topological path and routing path (output of the routing algorithm)

-> routing topology is a sub-graph of the graph representing the network topology

 Diameter ∆(G): maximum length of the shortest (topological) path p(u,v) between any two pair of vertices (u,v), u, v ∈ V

Limits of (Dyadic) Graph Modeling

- Graph-based modeling fails to capture group-level interactions / relationships between entities that are of different nature
- Many of the relationships exhibited are not restricted to be one-to-one, in particular in communication networks
 - multi-layer structures
 - multi-level/hierarchical structures
 - (hidden) relationships between entities

Objective

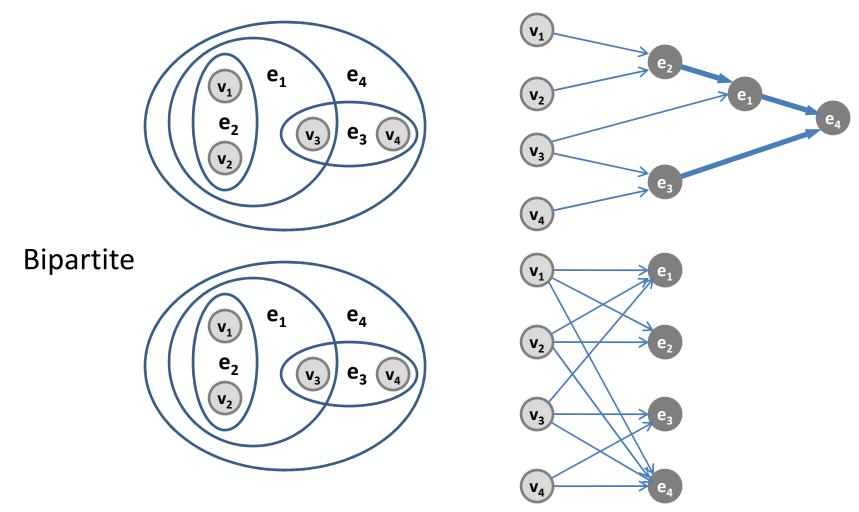
- Build a model that inherently handles many-to-many relationships/group interactions -> hypergraphs
- In a graph an edge can be incident on exactly two vertices whereas each hyperedge in a hypergraph is an arbitrary subset of the vertex set and represents relations between its elements
- Many hyperedges may be subsets of other hyperedges
- Hypergraphs can model many-to-many relationships among entities enabling in turn to handling problems such as
 - Similarity
 - Clustering
 - Construction of classifiers

Hypergraph definition

- V : finite set of vertices
- E : family of subsets of V such that $U_{e \in E} = (V, E, \omega)$ is called a hypergraph with hyperedge set E
 - − When each hyperedge $e \in E$ is assigned a positive weight ω(e), weighted hypergraph
- Notation:
 - Hypergraph H = (V,E)
 - Weighted hypergraph H = (V,E, ω)
- A hypergraph can be represented by a |V| × |E| incidence matrix H_t:
 - $h_t(v_i, e_j) = 1, \text{ if } v_i \in e_j$
 - $h_t(v_i,e_j) = 0, \text{ if } v_i \notin e_j$

Other representations

• Hierarchical DAG (Directed acyclic graph)

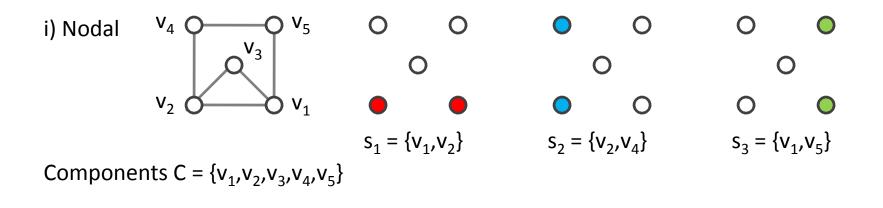


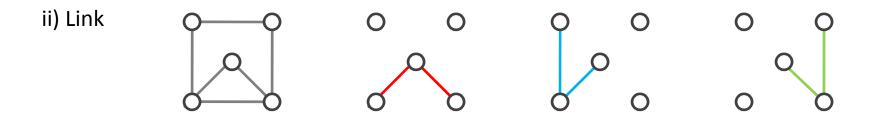
Shared Risk Model: Groups

- Let denote by
 - C : set of components of the system, C = $\{c_1, ..., c_p\}$ such that |C| = p
 - S : set of shared risk groups, $S = \{s_1, ..., s_q\}$ such that |S| = q
- Element $c_i \in C$ belongs to SRG s_i if c_i includes resources/supplies covered by s_i
- Properties
 - Any component $c_i \in C$ belongs at least to one SRG, i.e., $|S| = q \ge p$
 - − By extension, $c_i \in C$ belongs to SRG set s' = $\{s_1, ..., s_{q'}\}|_{q' \leq q}$ if c_i crosses at least one of the resources of each of its members $s_1, ..., s_{q'}$
 - Any pair of elements $c_i, c_j \in C$ belonging to the SRG s_k ({ c_i, c_j } $\in s_k$) can individually belong to a set of other SRGs, i.e., $c_i \in s_p$, $c_j \in s_q$ such that $s_k \cap s_p = \{c_i\}$ and $s_k \cap s_q = \{c_j\}$
 - More generally any component from a given subset of components taken individually may belong to other SRGs

Shared risk models

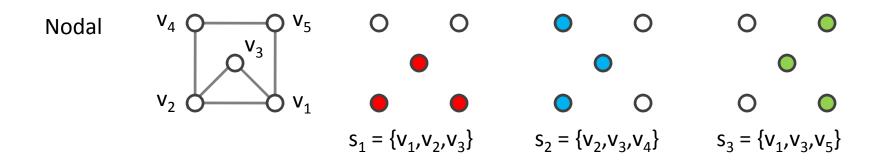
• SRG: multiple "entities" sharing common risk





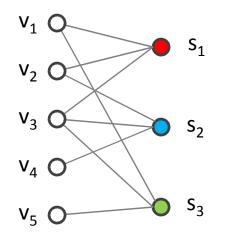
Shared risk models: nodal

• Application is "software failures" (programmable nodes)



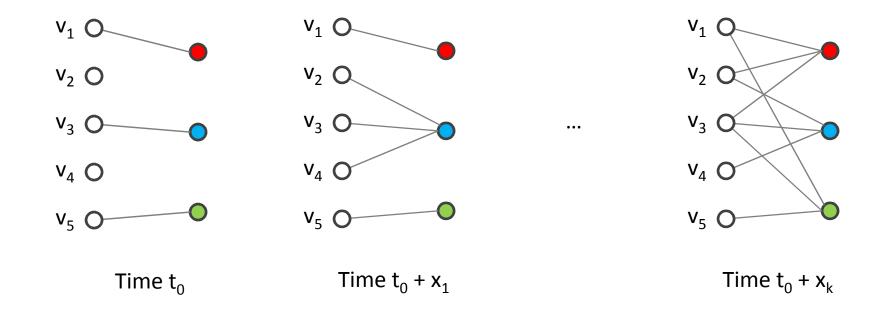
Bipartite representation

- Components C = {v₁, v₂, v₃, v₄, v₅} ≡ vertices of the hypergraph
- SRG S = {s₁,s₂,s₃} ≡ Hyperedges of the hypergraph e₁ ≡ s₁, e₂ ≡ s₁, e₂ ≡ S₃



Procedure

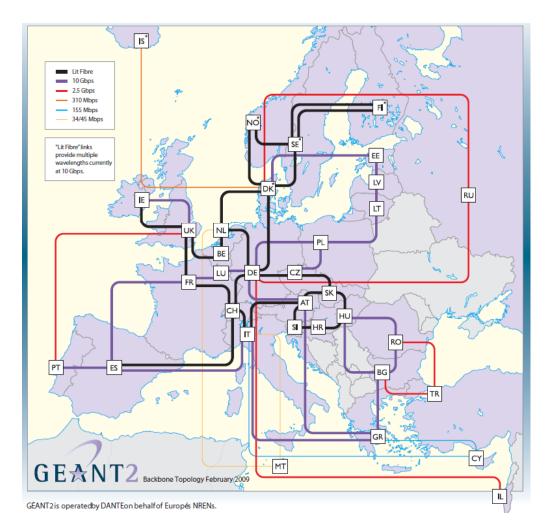
• Iterative construction (joint failure events)



• Note: single "failure" can also occur

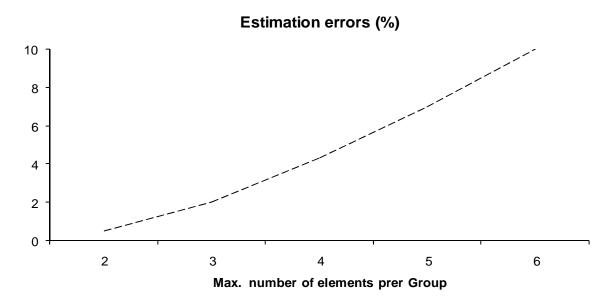
Setup

- Setup based on GEANT2 network topology (comprising 32 physical nodes)
- Shared risk groups comprising up to 6 shared components (i.e. a node can include up to 6 components common to other nodes)
- If that component fails on a given node, it could also fail on the others (if sharing common root cause)



Results

• Estimation error vs number of shared components per group (from 2 to 6)



- Relatively good detection accuracy of joint failure events for groups of 2 and 3 components with v parameter set to 2 (higher value of this parameter does not further increase accuracy)
- Prediction error increases as the number of components per group increases (about 10% for p=6)

Limits of Deterministic Hypergraphs

- Conventional hypergraph structure assigns vertex v_i to hyperedge e_i with a **binary decision**, i.e., h_t(v_i, e_j) equals 1 or 0
- Consequently, all vertices in a hyperedge are handled equally; relative "similarity", "affinity", etc. between vertices is discarded
- Leads to loss of some information, which may be harmful to some hypergraph based applications

Probabilistic Hypergraph

- Somehow application dependent
- Depends on the "relationship" itself (and its attributes)
- For instance: assume |V| × |V| relationship (e.g. similarity, affinity) matrix A over V computed based on some measurement and A(i,j) ∈ [0,1]

Procedure:

 Take each vertex as a 'centroid' vertex and form a hyperedge by a centroid and its k-nearest neighbors

-> the size of a hyperedge is k + 1

- The incidence matrix H of a probabilistic hypergraph
 - $h(v_i, e_j) = A(j,i)$, if $v_i \in e_j$
 - h(v_i, e_j) = 0, otherwise
- In general, assign a probability $P[h(v_i, e_j)]$ s.t. $\sum_{i \mid v_i \in e_j} h(v_i, e_j) = 1$

Probability of Joint failure events

- Individual component failure probability follows a generalized Weibull distribution (with scale parameter b, shape parameter c)
- For component c_i ($1 \le i \le p$)
 - $F_i(t) = Pr[T_i \le t]$: probability of failure up to time t
 - $R_i(t) = Pr[T_i > t]$ reliability (or survival) function
- Group comprising p elements survive as none of its individual components fails (assuming dependent failures)
- Generalized multivariate Weibull distribution with joint survival distribution $R_p(t)$ $\begin{pmatrix} & & & \\ & & \\ & & \end{pmatrix}^{\nu}$

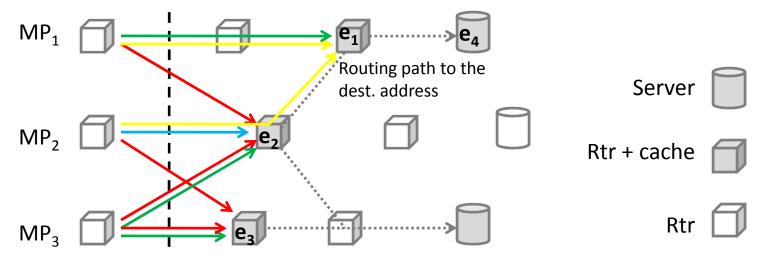
Joint survival distr.:
$$R_p(t) = \exp\left\{\tau_p^{\nu} - \left[\tau_p + \sum_{i=1}^{p} \lambda_i t_i^{c_i}\right]\right\}$$

where,

- λ_i individual failure rates ($\lambda_i > 0$)
- τ_p time threshold ($\tau_p \ge 0$)
- ν coupling effect ($\nu > 0$)

Content networks

- Multiple objects reachable via single address
- Multiple address hosting same object
- Example



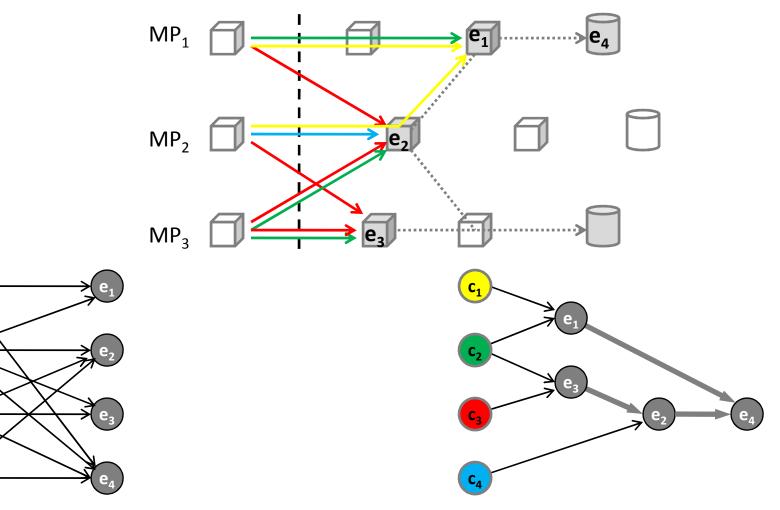
M:N

• Objective: MPs to derive the "M:N relationship" (including spatial distribution) from content request/replies

Procedure (example)

• Application of iterative procedure to construct HDAG

C₁



Expectations: Hypergraph mining

- Wide space of communication networks applications that can benefit from hypergraph modeling and analysis (not limited to "information systems")
- When involving detection process with uncertainty then probabilistic hypergraphs
- Evolution of networks (programmable networks, in-network caching, etc.) provides additional use cases for "inference"