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Graph-based modeling

e Graph-based modeling provides

— Foundation for phenomena and/or problems involving one-to-one
relationships (functional) and/or interactions (dynamic) among

entities
— Allows data analysis and mining to understand relations between
these entities -> Graph mining

* |In communication networks, "dyadic" deterministic graphs
but other types of graphs exist (e.g. Cayley graph, stochastic
graphs, bipartite graphs, etc.)



Graphs

Unweighted Graph G = (V,E)
— V :set of vertices, |[V]| =n
— E:setof edges, |E| =m
e Elements of E are pairs (u,v) where u,v 1V
e An edge (v,v) is a self-loop
Weighted Graph G = (V,E,w)
— V:set of vertices, |V| =n, E : set of edges, |E| =m
— = function which associates to each edge a weight

Undirected graph
— The edge pairs are unordered
e E defines symmetric relation
e (u,v) E implies (v,u) OE, (u,v) and (v,u) corr. to the same edge
Directed graph (digraph)
— The edge pairs are ordered



Example: network modeling

 Network topology modeled as undirected unweighted graph G =
(V,E)
— AS-level topology: vertices (abstract nodes) set V, |V| = n, represents

the autonomous systems (AS), and edges (or links) set E, |E| =m,
represents the interconnection between AS pairs (u,v), u, v 1V

e Network topology modeled as undirected weighted graph G =
(V,E,w)
— Router-level topology: vertices (nodes) set V, |V| = n, represents

routers or inter-connection points, and edges (or links) set E, |[E| = m,
represents nodes interconnection



Example: path modeling

e Path from source s to destination t, p(v,=s,v,=t): node
sequence [Vy(=S),Vq,..,V; =W, V...,V (=t)] such that v, is adjacent
tov. 4, (v.,v.) UE(G), Ui

e Distinction between topological path and routing path (output
of the routing algorithm)

-> routing topology is a sub-graph of the graph representing the
network topology

* Diameter A(G): maximum length of the shortest (topological)
path p(u,v) between any two pair of vertices (u,v), u, vV



Limits of (Dyadic) Graph Modeling

e Graph-based modeling fails to capture group-level

interactions / relationships between entities that are of
different nature

 Many of the relationships exhibited are not restricted to be
one-to-one, in particular in communication networks
— multi-layer structures
— multi-level/hierarchical structures
— (hidden) relationships between entities



Objective

Build a model that inherently handles many-to-many
relationships/group interactions -> hypergraphs

In a graph an edge can be incident on exactly two vertices
whereas each hyperedge in a hypergraph is an arbitrary
subset of the vertex set and represents relations between its
elements

Many hyperedges may be subsets of other hyperedges

Hypergraphs can model many-to-many relationships among
entities enabling in turn to handling problems such as

— Similarity

— Clustering

— Construction of classifiers



Hypergraph definition

V : finite set of vertices

E : family of subsets of V such that U, . = (V,E,®) is called a
hypergraph with hyperedge set E

— When each hyperedge e [ E is assignhed a positive weight w)e),
weighted hypergraph

Notation:
— Hypergraph H = (V,E)
— Weighted hypergraph H = (V,E,w)

A hypergraph can be represented by a |V| x |E| incidence
matrix H,:

— hyv,e)=1,ifv,Ue

— hv,e)=0,ifv,Ue



Other representations

e Hierarchical DAG (Directed acyclic graph)

e Bipartite

See also: Beyond Graphs: Toward Scalable Hypergraph Analysis, B.Heintz and A.Chandra Systems



Shared Risk Model: Groups

e Letdenote by
— C: set of components of the system, C = {c,,..,,c;} such that [C| =p
— S:set of shared risk groups, S = {s,,...,s,} such that [S| = ¢

 Element ¢; [ C belongs to SRG s; if ¢; includes resources/supplies covered by s,

* Properties
— Any component ¢, [ C belongs at least to one SRG, i.e., [S| =q=p

— By extension, ¢; I C belongs to SRG set s' = {s,...,5;} y <4

least one of the resources of each of its members S1seeesSq

— Any pair of elements ¢, ¢; [ C belonging to the SRG s, ({c, ¢;} s,) can
individually belong to a set of other SRGs, i.e., ¢, [ Sp 1 C; ] s, such thats, n
s, ={ctands, ns, ={c}

if ¢, crosses at

— More generally any component from a given subset of components taken
individually may belong to other SRGs



Shared risk models

 SRG: multiple "entities" sharing common risk
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Shared risk models: nodal

e Application is "software failures" (programmable nodes)
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Bipartite representation

e Components C = {v;,v,,V;,V,,Vs} =
vertices of the hypergraph

* SRG S ={s,,s,,5;} = Hyperedges of the
hypergraph e, =s; e, =s, €,=S;
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Procedure

lterative construction (joint failure events)
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Time t, Time ty + x; Time t, + X,

Note: single "failure" can also occur



Setup based on GEANT2
network topology (comprising
32 physical nodes)

Shared risk groups comprising

up to 6 shared components (i.e.

a node can include up to 6
components common to other
nodes)

If that component fails on a
given node, it could also fail on
the others (if sharing common
root cause)
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Results

e Estimation error vs number of shared components per group (from 2 to 6)
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— Relatively good detection accuracy of joint failure events for groups of 2 and 3
components with v parameter set to 2 (higher value of this parameter does not
further increase accuracy)

— Prediction error increases as the number of components per group increases
(about 10% for p=6)



Limits of Deterministic Hypergraphs

e Conventional hypergraph structure assigns vertex v, to
hyperedge e; with a binary decision, i.e., h,(v;, ;) equals 1 or 0

 Consequently, all vertices in a hyperedge are handled equally;

relative "similarity", "affinity", etc. between vertices is
discarded

e Leads to loss of some information, which may be harmful to
some hypergraph based applications



Probabilistic Hypergraph

Somehow application dependent
Depends on the "relationship" itself (and its attributes)

For instance: assume |V| x |V]| relationship (e.g. similarity,
affinity) matrix A over V computed based on some
measurement and A(i,j) € [0,1]

Procedure:

— Take each vertex as a ‘centroid’ vertex and form a hyperedge by a
centroid and its k-nearest neighbors

-> the size of a hyperedgeis k + 1

— The incidence matrix H of a probabilistic hypergraph
* hiv, &) =A(j,i), if v, € g
* h(v, ej) =0, otherwise

In general, assign a probability P[h(v;, ;)] s.t. 2, Dlv;, €) =1



Probability of Joint failure events

Individual component failure probability follows a generalized Weibull
distribution (with scale parameter b, shape parameter c)

For component ¢, (1<i<p)
— F,(t) = Pr[T, < t] : probability of failure up to time t
— R,(t) = Pr[T, > t] reliability (or survival) function

Group comprising p elements survive as none of its individual components
fails (assuming dependent failures)

Generalized multivariate Weibull distribution with joint survival distribution
R,(t) p g
: : : . _ v C
Joint survival distr.: R (t) = expq 7} —{rp +le/liti }
where,
A individual fallurerates (A > 0)

r, timethreshold (7, =0)
v coupling effect (v > 0)



Content networks

e Multiple objects reachable via single address
M:N
e Multiple address hosting same object

e Example
|
MP, ——f S S
| — g
_+"Routing path to the
I dest. address Server
MP
? Rtr + cache
MP3 o (1 I )@ Rtr

e Objective: MPs to derive the "M:N relationship" (including
spatial distribution) from content request/replies




Procedure (example)

e Application of iterative procedure to construct HDAG
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Expectations: Hypergraph mining

 Wide space of communication networks applications that can

benefit from hypergraph modeling and analysis (not limited to
"information systems")

* When involving detection process with uncertainty then
probabilistic hypergraphs

e Evolution of networks (programmable networks, in-network
caching, etc.) provides additional use cases for "inference"



