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Graph-based modeling

• Graph-based modeling provides

– Foundation for phenomena and/or problems involving one-to-one 

relationships (functional) and/or interactions (dynamic) among 

entities

– Allows data analysis and mining to understand relations between 

these entities -> Graph mining

• In communication networks, "dyadic" deterministic graphs 

but other types of graphs exist (e.g. Cayley graph, stochastic

graphs, bipartite graphs, etc.)  



Graphs

• Unweighted Graph G = (V,E)

– V : set of vertices, |V| = n 

– E : set of edges, |E| = m

• Elements of E are pairs (u,v) where u,v ∈ V  

• An edge (v,v) is a self-loop  

• Weighted Graph G = (V,E,ω)

– V : set of vertices, |V| = n, E : set of edges, |E| = m– V : set of vertices, |V| = n, E : set of edges, |E| = m

– ω = function which associates to each edge a weight

• Undirected graph

– The edge pairs are unordered

• E defines symmetric relation

• (u,v) ∈ E  implies  (v,u) ∈ E, (u,v) and (v,u) corr. to the same edge

• Directed graph (digraph)

– The edge pairs are ordered



Example: network modeling

• Network topology modeled as undirected unweighted graph G = 

(V,E) 

– AS-level topology: vertices (abstract nodes) set V, |V| = n, represents 

the autonomous systems (AS), and edges (or links) set E, |E| = m, 

represents the interconnection between AS pairs (u,v), u, v ∈ V  

• Network topology modeled as undirected weighted graph G = 

(V,E,ω) 

– Router-level topology: vertices (nodes) set V, |V| = n, represents 

routers or inter-connection points, and edges (or links) set E, |E| = m, 

represents nodes interconnection



Example: path modeling

• Path from source s to destination t, p(v0=s,vm=t): node 

sequence [v0(=s),v1,...,vi-1=u,vi,...,vm(=t)] such that vi is adjacent 

to vi-1, (vi-1,vi) ∈ E(G), ∀ i

• Distinction between topological path and routing path (output 

of the routing algorithm)of the routing algorithm)

-> routing topology is a sub-graph of the graph representing the 

network topology

• Diameter ∆∆∆∆(G): maximum length of the shortest (topological) 

path p(u,v) between any two pair of vertices (u,v), u, v ∈ V  



Limits of (Dyadic) Graph Modeling

• Graph-based modeling fails to capture group-level 

interactions / relationships between entities that are of 

different nature

• Many of the relationships exhibited are not restricted to be 

one-to-one, in particular in communication networksone-to-one, in particular in communication networks

– multi-layer structures

– multi-level/hierarchical structures

– (hidden) relationships between entities



Objective

• Build a model that inherently handles many-to-many 

relationships/group interactions -> hypergraphs

• In a graph an edge can be incident on exactly two vertices 

whereas each hyperedge in a hypergraph is an arbitrary 

subset of the vertex set and represents relations between its 

elementselements

• Many hyperedges may be subsets of other hyperedges

• Hypergraphs can model many-to-many relationships among 

entities enabling in turn to handling problems such as 

– Similarity

– Clustering 

– Construction of classifiers



Hypergraph definition

• V : finite set of vertices

• E : family of subsets of V such that Ue ∈ E = (V,E,ω) is called a 

hypergraph with hyperedge set E

– When each hyperedge e ∈ E is assigned a positive weight ω(e), 

weighted hypergraph

• Notation: 

– Hypergraph H = (V,E)

– Weighted hypergraph H = (V,E,ω)

• A hypergraph can be represented by a |V| × |E| incidence 

matrix Ht: 

– ht(vi,ej) = 1, if vi ∈ ej

– ht(vi,ej) = 0, if vi ∉ ej



Other representations

• Hierarchical DAG (Directed acyclic graph)
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Shared Risk Model: Groups

• Let denote by 

– C : set of components of the system, C = {c1,…,cp}  such that |C| = p 

– S : set of shared risk groups, S = {s1,…,sq} such that |S| = q 

• Element cj ∈ C belongs to SRG si if cj includes resources/supplies covered by si

• Properties

– Any component ci ∈ C belongs at least to one SRG, i.e., |S| = q ≥ p

– By extension, ci ∈ C belongs to SRG set s' = {s1,…,sq’}|q’ ≤ q if ci crosses at 

least one of the resources of each of its members s1,…,sq’

– Any pair of elements ci, cj ∈ C belonging to the SRG sk ({ci, cj} ∈ sk) can 

individually belong to a set of other SRGs, i.e., ci ∈ sp , cj ∈ sq such that sk ∩
sp = {ci} and sk ∩ sq = {cj}

– More generally any component from a given subset of components taken 

individually may belong to other SRGs



Shared risk models

• SRG: multiple "entities" sharing common risk
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Shared risk models: nodal

• Application is "software failures" (programmable nodes)
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• Components C = {v1,v2,v3,v4,v5} ≡
vertices of the hypergraph
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Procedure

• Iterative construction (joint failure events)
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Setup 

• Setup based on GEANT2 

network topology (comprising  

32 physical nodes)

• Shared risk groups comprising 

up to 6 shared components (i.e. 

a node can include up to 6 a node can include up to 6 

components common to other 

nodes)

• If that component fails on a 

given node, it could also fail on 

the others (if sharing common 

root cause)



Results

• Estimation error vs number of shared components per group (from 2 to 6)
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Limits of Deterministic Hypergraphs

• Conventional hypergraph structure assigns vertex vi to 

hyperedge ej with a binary decision, i.e., ht(vi, ej) equals 1 or 0

• Consequently, all vertices in a hyperedge are handled equally; 

relative "similarity", "affinity", etc. between vertices is 

discardeddiscarded

• Leads to loss of some information, which may be harmful to 

some hypergraph based applications



Probabilistic Hypergraph

• Somehow application dependent

• Depends on the "relationship" itself (and its attributes)

• For instance: assume |V| × |V| relationship (e.g. similarity, 

affinity) matrix A over V computed based on some 

measurement and A(i,j) ∈ [0,1] 

Procedure:

∈

Procedure:

– Take each vertex as a ‘centroid’ vertex and form a hyperedge by a 

centroid and its k-nearest neighbors

-> the size of a hyperedge is k + 1

– The incidence matrix H of a probabilistic hypergraph

• h(vi, ej) = A(j,i), if vi ∈ ej

• h(vi, ej) = 0, otherwise

• In general, assign a probability P[h(vi, ej)] s.t. Σi|vi ∈ ej h(vi, ej) = 1 



Probability of Joint failure events

• Individual component failure probability follows a generalized Weibull 

distribution (with scale parameter b, shape parameter c)

• For component ci (1 ≤ i ≤ p)

– Fi(t) = Pr[Ti ≤ t] : probability of failure up to time t

– Ri(t) = Pr[Ti > t] reliability (or survival) function

• Group comprising p elements survive as none of its individual components 

fails (assuming dependent failures)fails (assuming dependent failures)

• Generalized multivariate Weibull distribution with joint survival distribution 
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Content networks

• Multiple objects reachable via single address

• Multiple address hosting same object

• Example

M:N

MP1 e1 e4

• Objective: MPs to derive the "M:N relationship" (including

spatial distribution) from content request/replies
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Procedure (example)

• Application of iterative procedure to construct HDAG
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Expectations: Hypergraph mining

• Wide space of communication networks applications that can 

benefit from hypergraph modeling and analysis (not limited to 

"information systems")

• When involving detection process with uncertainty then 

probabilistic hypergraphsprobabilistic hypergraphs

• Evolution of networks (programmable networks, in-network 

caching, etc.) provides additional use cases for "inference"


